Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thần tượng của tớ là anhxtanh
= (1/3)50 : (1/3)30
= (1/3)20
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{1}{10.9}-\frac{1}{9.8}-\frac{1}{8.7}-\frac{1}{7.6}-\frac{1}{6.5}-\frac{1}{5.4}-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
\(-A=\left(\frac{1}{10.9}+\frac{1}{9.8}+\frac{1}{8.7}+\frac{1}{7.6}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(-A=\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+\frac{1}{8}-\frac{1}{7}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\)
\(-A=\frac{1}{10}-1=\frac{-9}{10}\Rightarrow A=\frac{9}{10}\)
\(A=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{8.9}+\frac{1}{7.8}+\frac{1}{6.7}+\frac{1}{5.6}+\frac{1}{4.5}+\frac{1}{3.4}+\frac{1}{2.3}+\frac{1}{1.2}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)
Vậy A=-79/90
a) \(-5,13:\left(5\frac{5}{28}-1\frac{8}{9}.1,25+1\frac{16}{63}\right)\)
\(=-5,13:\left(\frac{145}{28}-\frac{17}{9}.1,25+\frac{79}{63}\right)\)
\(=-5,13:\left(\frac{145}{28}-\frac{85}{36}+\frac{79}{63}\right)\)
\(=-5,13:\frac{57}{14}\)
\(=-\frac{63}{50}\)
b) \(\left(3\frac{1}{3}.1,9+19,5:4\frac{1}{3}.\left(\frac{62}{75}-\frac{4}{25}\right)\right)\)
\(=\left(\frac{10}{3}.1,9+19,5:\frac{13}{3}\right).\left(\frac{62}{75}-\frac{4}{25}\right)\)
\(=\left(\frac{19}{3}+\frac{9}{2}\right).\frac{2}{3}\)
\(=\frac{65}{6}.\frac{2}{3}\)
\(=\frac{65}{9}\)
^...^ ^_^
Từ đầu bài
=> 52S=52+54+56+...+5202
=>52S-S= (52+54+56+...+5202)-(1+52+54+...+5200)
=> 24.S = 5202-1
=> S = \(\frac{5^{202}-1}{24}\)
\(=x^2-1+x-1-x^2-x+x^2-x+2x-2=-x^2\)
\(=-4+x^2+x=-x^2\)
\(=-4+x^2+x+x^2=0\)
\(=-4+2x^2+x=0\Rightarrow x=-1,687\)
Vì ko có đề nen mk làm theo hai cách
C1 : Phân tích\(\frac{\left(\frac{1}{9}\right)^{25}}{\left(\frac{1}{3}\right)^{30}}=\frac{\frac{1^{25}}{9^{25}}}{\frac{1^{30}}{3^{30}}}=\frac{\frac{1}{9^{25}}}{\frac{1}{3^{30}}}\)
C2 : So sánh \(\left(\frac{1}{9}\right)^{25}=\frac{1^{25}}{9^{25}}=\frac{1}{9^{25}}\)
\(\left(\frac{1}{3}\right)^{30}=\frac{1^{30}}{3^{30}}=\frac{1}{3^{30}}=\frac{1}{\left(3^2\right)^{15}}=\frac{1}{9^{15}}\)
Vì tử bằng tử nên mẫu bé hơn thì lớn hơn
Vì \(9^{25}>9^{15}\)
\(=>\frac{1}{9^{25}}< \frac{1}{9^{15}}=>\left(\frac{1}{9}\right)^{25}< \left(\frac{1}{3}\right)^{30}\)
Hết !!!
\(\frac{\left[\frac{1}{9}\right]^{25}}{\left[\frac{1}{3}\right]^{30}}=\frac{\left[\frac{1}{3}\cdot\frac{1}{3}\right]^{25}}{\left[\frac{1}{3}\right]^{30}}=\frac{\left[\frac{1}{3}\right]^{25}\cdot\left[\frac{1}{3}\right]^{25}}{\left[\frac{1}{3}\right]^{30}}=\frac{\left[\frac{1}{3}\right]^{50}}{\left[\frac{1}{3}\right]^{30}}=\left[\frac{1}{3}\right]^{20}\)