Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: \(\dfrac{5}{3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{101\cdot103}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{101\cdot103}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{103}\right)\)
\(=\dfrac{5}{2}\cdot\dfrac{102}{103}\)
\(=\dfrac{255}{103}\)
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
=> A=24497550
a) -12.(x - 5) + 7(3 - x) = 5
=> -12x + 60 + 21 - 7x = 5
=> -19x + 81 = 5
=> -19x = 5 - 81
=> -19x = -76
=> x = -76 : (-19)
=> x = 4
b) (x + 1) + (x + 2) + (x + 3) + ... + (x + 20) = 250
=> (x + x + x + ... + x) + (1 + 2 + 3 + ... + 20) = 250
=> 20x + 210 = 250
=> 20x = 250 - 210
=> 20x = 40
= > x = 40 : 20
=> x = 2
\(-12\left(x-5\right)+7\left(3-x\right)=5\)
\(\Leftrightarrow-12x+60+21-7x=5\)
\(\Leftrightarrow-19x+81=5\)
\(\Leftrightarrow81-5=19x\)
\(\Leftrightarrow19x=76\)
\(\Leftrightarrow x=4\)
a) (38 - 60) + (20 - 38)
= 38 - 60 + 20 - 38
= (38 - 38) + (-60 + 20)
= 0 - 40
= -40
b) 75 - (20 + 75)
= 75 - 20 - 75
= (75 - 75) - 20
= 0 - 20
= -20
c) 32 + (60 - 32)
= 32 + 60 - 32
= (32 - 32) + 60
= 0 + 60
= 60
d) (81 - 36) - (81 - 36)
= 81 - 36 - 81 + 36
= (81 - 81) + (-36 + 36)
= 0 + 0
= 0
e) (2 + 4 + 6 + 8) - (1 + 3 + 5 + 7)
= 2 + 4 + 6 + 8 - 1 - 3 - 5 - 7
= (2 - 1) + (4 - 3) + (6 - 5) + (8 - 7)
= 1 + 1 + 1 + 1
= 4
f) (1 + 3 + 5 + 7 + ... + 99) - (2 + 4 + 6 + 8 + ... + 100)
= 1 + 3 + 5 + 7 + ... + 99 - 2 - 4 - 6 - 8 - ... - 100
= (1 - 2) + (3 - 4) + (5 - 6) + (7 - 8) + ... + (99 - 100)
= -1 - 1 - 1 - 1 - ... - 1 (50 chữ số 1)
= -50
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}=\dfrac{100}{101}\)