K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

tu ve hinh nhe:

a)  Theo t/c 2 tiep tuyen cat nhau ta co:  OA la phan giac goc BOC

Tam giab BOC can tai O, OA la phan giac goc BOC

=> OA là đường trung trực của BC

hay OA vuong goc voi BC

Ap dung HTL vao tam giac vuong ABO ta co:

               \(OH.OA=OB^2=R^2\)    (dpcm)

13 tháng 12 2018

b)  De thay:  tam giac BFE vuong tai F

hay BF vuong goc voi AE

Ap dung HTL vao 2 tam giac vuong: ABO va BAE ta co:

    \(AH.AO=AB^2\)

    \(AF.AE=AB^2\)

suy ra:   \(AH.AO=AF.AE\)

c)  tu b) c/m:  \(\Delta AHF~\Delta AEO\) (c.g.c)

=>   \(\widehat{AHF}=\widehat{AEO}\)

Ta co:   \(\widehat{AHF}+\widehat{OHF}=180^0\)

=>   \(\widehat{AEO}+\widehat{OHF}=180^0\)

19 tháng 12 2021

Mình chỉ biết làm câu a thôi nhé bạn 🙂🙂🙂.

a) Chứng minh OA vuông góc BC và OH.OA = R2
Xét (O) có:
✱ OB=OC (=R)
✱ AB=AC (tính chất 2 tiếp tuyến cắt nhau)
⇒ O,A  thuộc đường trung trực của BC.
⇒ OA là đường trung trực của BC.
⇒ OA ⊥ BC tại đường trung điểm H của BC.
Xét ΔABO vuông tại B có đường cao BH (cmt) có:
    OB2=OH.OA (hệ thức lượng) (1)
Mà OB=R (cmt) ⇒ OB2=R2 (2)
Từ (1) và (2) ⇒ OH.OA=R2

a: Xét (O) có

AB,AC là các tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là đường trung trực của BC
=>OA vuông góc với BC tạiH

=>OH*OA=OB^2; AH*AO=AB^2

b: Xét (O) có

ΔBFE nọi tiêp

BE là đường kính

DO đo: ΔBFE vuông tại F

Xét ΔBEA vuông tại B có BF là đường cao

nên AF*AE=AB^2

=>AH*AO=AF*AE

c: AH*AO=AF*AE
=>AH/AE=AF/AO

=>ΔAHF đồng dạngvới ΔAEO

=>góc AHF=góc AEO

=>góc AEO+góc OHF=180 độ

6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)

8 tháng 5 2020

ajnomoto

19 tháng 12 2021

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA⊥BC

19 tháng 12 2021

Bạn biết làm câu b và c không?

19 tháng 12 2021

\(a,\) Vì AB=AC (tc 2 tiếp tuyến) nên A∈ trung trực BC

Vì OB=OC=R nên O∈ trung trực BC

Do đó OA là trung trực BC

Do đó OA⊥BC tại H

Áp dụng HTL tam giác OAC vuông C: \(OH\cdot OA=OC^2=R^2\)

19 tháng 12 2021

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của CB(2)

Từ (1) và (2) suy ra OA⊥BC