Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144.
Giải thích quy luật: Hai số liền nhau trên dãy số trên, cộng vào thì ra số tiếp theo.
a) 23.k có ít nhất các ước là 23;k;1
23.k là số nguyên tố nếu nó chỉ có 2 ước là 1 và chính nó (là 23.k)
=> 23.k = 23 => k = 1
Vậy...
b) 2 chỉ có 2 ước là 1 và 2 nên 2 là số nguyên tố
các số chẵn lớn hơn 2 có ít nhất 3 ước là 1;2;và chính nó nên không thể là số nguyên tố
Vậy 2 là số nguyên tố chẵn duy nhất
Có 2 số nguyên tố cùng nhau mà cả hai đều là hợp số
VD: 14 và 15 đều là hợp số
14=3.4
15=3.5
UCLN(14;15)=1
vậy 14 và 15 là 2 số nguyên tố cùng nhau
16p+1,16p,16p−116p+1,16p,16p−1là ba số nguyên liên tiếp nên 11trong 33số đó chia hết cho 33.
Có 16p+116p+1là số nguyên tố nên không chia hết cho 33.
16p16pkhông chia hết cho 33do 16⋮/316⋮̸3, pplà số nguyên tố
(nếu p=3p=3thì 16p+1=4916p+1=49không là số nguyên tố)
do đó 16p−116p−1chia hết cho 33do đó là hợp số.
Nhớ t.i.c.k mk nha
Câu 1 :nếu k=0 thì 23k=0 ko là số nguyên tố [loại]
nếu k=1 thì 23k=23 nguyên tố
nếu k>1 thì 23k có nhiều hơn 2 ước [là hợp số ; loại]
Vậy k=1
Câu 2; 2 là số nguyên tố chẵn duy nhất vì nó có 2 ước là 1 và chính nó còn những số chẵn khác đều chia hết cho 2.
Câu 1 :nếu k=0 thì 23k=0 ko là số nguyên tố [loại]
nếu k=1 thì 23k=23 nguyên tố
Câu 1 :nếu k=0 thì 23k=0 ko là số nguyên tố [loại]
nếu k=1 thì 23k=23 nguyên tố
nếu k>1 thì 23k có nhiều hơn 2 ước [là hợp số ; loại]
Vậy k=1
Câu 2; 2 là số nguyên tố chẵn duy nhất vì nó có 2 ước là 1 và chính nó còn những số chẵn khác đều chia hết cho 2.
1.(cái cho p và p+20..)
p là số nguyên tố và p> 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+1=> p+20=3k+1+20=3k+21 chia hết cho 3 (loại) vì p+20 phải là snt
Nếu p=3k+2 =>p+20=3k+2+20=3k+22 không chia hết cho 3 (chọn)
p+25=3k+2+25=3k+27 chia hết cho 3
Nên p+25 là hợp số
Olm.vn sẽ hướng dẫn em giải bằng phương pháp đánh giá em nhé!
Nếu p = 2 \(\Rightarrow\) 2p2 + 1 = 2.22 + 1 = 9 (nhận)
Nếu p = 3 ⇒ 2p2 + 1 = 2.32 + 1 = 19 (loại)
Nếu p > 3 ⇒ p không chia hết cho 3 ⇒ p2 chia 3 dư 1
⇒ 2p2 : 3 dư 2 ⇒ 2p2 + 1 ⋮ 3 (nhận)
Từ những lập luận trên ta có
\(\forall\) p \(\ne\) 3; p \(\in\) P thì 2p2 + 1 là hợp số
b, p + 4 và p + 8 đều là số nguyên tố.
Nếu p = 2 thì p + 4 = 2 + 4 = 6 loại
Nếu p = 3 thì p + 4 = 3 + 4 = 7; p + 8 = 3 + 8 = 11 (nhận)
Nếu p > 3 ta có: p không chia hết cho 3 ⇒ p = 3k + 1
hoặc p = 3k + 2
th1 : p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 ⋮ 3 (loại)
th2: p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 ⋮ 3 (loại)
Từ những lập luận trên ta có p = 3 là giá trị thỏa mãn đề bài
-Vì tất cả các số chẵn khác đều chia hết cho 2.Nói cách khác, các số chẵn khác đều có ba ước trở lên( gồm 2, chính nó và 1)
- Số 2 chỉ có hai ước duy nhất là 1 và chính nó
- Các số chẵn đều chia hết cho 2, nhưng 2:2 =1 (Ước là 1)