K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2020

Phân tích 1 tí 

a + b = 11 > 0 

a . b = 30 > 0 

Suy ra a và b đều là số dương 

a + b = 11 

a = 11 - b 

a . b = 30 

( 11 - b ) . b = 30 

-b^2 + 11b - 30 = 0 

\(\orbr{\begin{cases}b=5\\b=6\end{cases}}\)   ( nhận ) 

\(b=5\Rightarrow a=6\left(n\right)\)   

\(b=6\Rightarrow a=5\left(l\right)\left(a>b\right)\)    

Vậy chỉ có a = 6 ; b = 5 thỏa điều kiện 

\(\left(a-b\right)^{2019}\)   

\(=\left(6-5\right)^{2019}\)   

\(=1^{2019}\)   

\(=1\)

 Vì a+b>0 và ab>0 nên a,b dương

Ta có\(a+b=11\Rightarrow\left(a+b\right)^2=11^2\Leftrightarrow a^2+2ab+b^2=121\)

\(\Rightarrow a^2+2ab+b^2-4ab=121-4ab\Leftrightarrow\left(a-b\right)^2=1\Rightarrow a-b=1\)(Do ab=1 và a,b dương và a>b)

\(\Rightarrow P=1^{2019}=1\)

           Vậy P=1

DD
25 tháng 7 2021

Do vai trò của \(a,b\)là như nhau nên giả sử \(a\ge b\).

Ta có nhận xét rằng \(ab\)lớn nhất khi giá trị của \(a\)và \(b\)bằng nhau hoặc \(a-b=1\).

Nếu \(a-b>1\): ta thay tích \(ab\)bởi tích \(\left(a-1\right)\left(b+1\right)\)được

\(\left(a-1\right)\left(b+1\right)-ab=ab+a-b-1-ab=a-b-1>0\)

do đó \(a-b\le1\).

Vì \(a,b\)là số tự nhiên mà \(a+b=2019\)là số lẻ nên \(P\)đặt max tại \(a-b=1\)

\(\Rightarrow\hept{\begin{cases}a=1010\\b=1009\end{cases}}\)

Vậy \(maxP=1010.1009\).

29 tháng 10 2019

Ta có : ( a - b )2  + 4ab

= a2 - 2ab + b+ 4ab

= a+ 2ab + b2

= ( a + b )( Vế trái )

Do đó : ( a + b )= ( a - b )2 + 4ab 

29 tháng 10 2019

+) Biến đổi vế phải ta có :

\(\left(A-B\right)^2+4AB\)

\(=A^2-2AB+B^2+4AB\)

\(=A^2+2AB+B^2=\left(A+B\right)^2=VT\left(đpcm\right)\)

Bài 2:

Diện tích khu vườn là:

\(\left(14+x\right)\left(18-x\right)\)

\(=252-14x+18x-x^2\)

\(=-x^2+4x+252\)

\(=-\left(x^2-4x+4-256\right)\)

\(=-\left(x-2\right)^2+256\le256\forall x\)

Dấu '=' xảy ra khi x=2

Chu vi hình chữ nhật là:

\(C=2\left[14+x+18-x\right]=2\cdot32=64\left(cm\right)\)

20 tháng 10 2021

\(a,a^2+b^2=\left(a+b\right)^2-2ab=3^2-2\left(-10\right)=29\\ b,a^2+b^2=\left(a-b\right)^2+2ab=2^2+2\cdot24=52\)

5 tháng 9 2019

Bài 1:

\(a+b=15\)

\(\Rightarrow\left(a+b\right)^2=225\)

\(\Leftrightarrow a^2+2ab+b^2=225\)

\(\Leftrightarrow a^2+4+b^2=225\)

\(\Leftrightarrow a^2+b^2=221\)

Ta có: \(\left(a-b\right)^2=a^2-2ab+b^2\)

                               \(=221-4\)

                                \(217\)

Bài 2:

Vì \(x:7\)dư 6

\(\Rightarrow x\equiv-1\left(mod7\right)\)

\(\Rightarrow x^2\equiv1\left(mod7\right)\)

Vậy \(x^2:7\)dư 1

31 tháng 7 2021

ta có: (a-b)2 = (a+b)2 - 4ab = 49 - 48 = 1 => a-b = \(\pm1\)

nhưng vì a<b nên a-b = -1

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4\cdot12=1\)

nên a-b=-1

21 tháng 7 2016

\(A=a^3-b^3-84\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)-84\)

\(=\left(a-b\right)\left\{\left(a-b\right)^2+3ab\right\}\)

\(=6.\left[6^2+3.9\right]=6.63=379\)

\(Ủng\)hộ nhak

8 tháng 12 2021
Ta có:a-b=10=> a*2 - 2ab +b*2=100 a*2+b*2=100+2ab=100-2.24=52 => a*2 + b*2 + 2ab = 52-2.24=4 (a+b)*2=4