K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b XÉT ∆AHC VÀ ∆BAC GÓC C CHUNG . GOC BAC=GÓC AHC VẬY ∆AHC ĐỒNG DẠNG ∆BAC => GÓC B=GÓC C ( 2 cặp cạnh tt) Xest∆AHB VÀ ∆AHC CÓ GÓC BHA=GÓC CHA=90° GÓC B=GÓC C (CMT) VẬY ∆AHB ĐỒNG DẠNG ∆AHC
9 tháng 3 2022

tính BD và DC hả

9 tháng 3 2022

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

Vì AD là pg \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\Leftrightarrow\dfrac{DC}{AC}=\dfrac{BD}{AB}\)

Theo tc dãy tỉ số bằng nhau ta có 

\(\dfrac{DC}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow DC=\dfrac{30}{7}cm;BD=\dfrac{40}{7}cm\)

25 tháng 4 2021

a: BC=căn 6^2+8^2=10cm

AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=10/7

=>DB=30/7cm; DC=40/7cm

b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

c: AH=8*6/10=4,8cm

HB=6^2/10=3,6cm

CH=10-3,6=6,4cm

S AHB=1/2*4,8*3,6=8,64cm2

S AHC=1/2*4,8*6,4=15,36cm2

28 tháng 4 2018

a)   \(\Delta ABC\) có   \(AD\) là phân giác  \(\widehat{BAC}\)

\(\Rightarrow\)\(\frac{DB}{AB}=\frac{DC}{AC}\)

hay    \(\frac{DB}{DC}=\frac{AB}{AC}=\frac{8}{6}=\frac{4}{3}\)

b)  bn tự kẻ hình

c)  Xét  \(\Delta AHB\)và   \(\Delta CHA\)có:

\(\widehat{AHB}=\widehat{CHA}=90^0\)

\(\widehat{HAB}=\widehat{HCA}\)  (cùng phụ với góc CAH)

suy ra:   \(\Delta AHB~\Delta CHA\) (g.g)

26 tháng 4 2019

A B C D H

a) Sử dụng định lí Pita go tính đc BC=10 cm

Vì AD là phân giác góc A , D thuộc Bc nên ta có:

\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{8}{6}=\frac{4}{3}\Rightarrow\hept{\begin{cases}BD=\frac{4}{7}.BC=\frac{40}{7}\\CD=\frac{3}{7}.BC=\frac{30}{7}\end{cases}}\) (cm)

b) Xét tam giác AHB và tam giác CHA

có: \(\widehat{AHB}=\widehat{CHA}=90^o\)

\(\widehat{ABH}=\widehat{CAH}\)( cùng phụ góc ACB)

=> tam giác ABH đồng dạng tam giác CHA

c) \(S_{\Delta ABC}=\frac{1}{2}.AH.BC=\frac{1}{2}AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.6}{10}=\frac{24}{5}\)(cm)

Xét tam giác AHB vuông và tam giác AHC vuông

Sử dụng định lí pitago để tính \(BH=\frac{32}{5};CH=\frac{18}{5}\)(cm)

\(S_{\Delta AHB}=\frac{1}{2}.AH.BH=\frac{1}{2}.\frac{24}{5}.\frac{32}{5}=\frac{384}{25}\left(cm^2\right)\)

\(S_{\Delta AHC}=\frac{1}{2}.AH.CH=\frac{1}{2}.\frac{24}{5}.\frac{18}{5}=\frac{216}{25}\left(cm^2\right)\)

a: BC=căn 6^2+8^2=10cm

AD là phân giác

=>BD/CD=AB/AC=3/4

=>BD/3=CD/4=(BD+CD)/(3+4)=10/7

=>BD=30/7cm

b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA