Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 6^2+8^2=10cm
AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=10/7
=>DB=30/7cm; DC=40/7cm
b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
c: AH=8*6/10=4,8cm
HB=6^2/10=3,6cm
CH=10-3,6=6,4cm
S AHB=1/2*4,8*3,6=8,64cm2
S AHC=1/2*4,8*6,4=15,36cm2
a) Sử dụng định lí Pita go tính đc BC=10 cm
Vì AD là phân giác góc A , D thuộc Bc nên ta có:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{8}{6}=\frac{4}{3}\Rightarrow\hept{\begin{cases}BD=\frac{4}{7}.BC=\frac{40}{7}\\CD=\frac{3}{7}.BC=\frac{30}{7}\end{cases}}\) (cm)
b) Xét tam giác AHB và tam giác CHA
có: \(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\widehat{ABH}=\widehat{CAH}\)( cùng phụ góc ACB)
=> tam giác ABH đồng dạng tam giác CHA
c) \(S_{\Delta ABC}=\frac{1}{2}.AH.BC=\frac{1}{2}AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.6}{10}=\frac{24}{5}\)(cm)
Xét tam giác AHB vuông và tam giác AHC vuông
Sử dụng định lí pitago để tính \(BH=\frac{32}{5};CH=\frac{18}{5}\)(cm)
\(S_{\Delta AHB}=\frac{1}{2}.AH.BH=\frac{1}{2}.\frac{24}{5}.\frac{32}{5}=\frac{384}{25}\left(cm^2\right)\)
\(S_{\Delta AHC}=\frac{1}{2}.AH.CH=\frac{1}{2}.\frac{24}{5}.\frac{18}{5}=\frac{216}{25}\left(cm^2\right)\)
a: BC=căn 6^2+8^2=10cm
AD là phân giác
=>BD/CD=AB/AC=3/4
=>BD/3=CD/4=(BD+CD)/(3+4)=10/7
=>BD=30/7cm
b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
a) Gọi x(cm) là độ dài cạnh DB
Áp dụng định lý Pi-ta-go vào tam giác ABC vuông tại A, ta có:
BC2= AB2 + AC2= 82 + 62= 100
=>BC=\(\sqrt{100}\)=10(cm)
Xét tam giác ABC, ta có:
AD là tia phân giác góc A
=> \(\frac{DB}{AB}=\frac{DC}{AC}hay\frac{x}{8}=\frac{10-x}{6}\)
=> 6x = 8(10-x)
<=>6x=80-8x
<=>6x + 8x=80
<=> 14x=80
<=> x= 5,72(cm)
Vậy DB= 5,72 cm
DC= 10 - 5,72= 4,28 (cm)
a. tam giác ABC có góc A = 90 độ nên
BC^2=AB^2+AC^2
=8^2+6^2=100
=>BC =10
áp dụng tính chất dãy tỉ số bằng nhau ta có :
BD/AB=DC/AC =BD+DC/AB+AC=10/14=5/7
=>BD/AB=5/7=>BD=8*5:7=40/7
=>DC/Ac=5/7=>DC=6*5/7=30/7