Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2\cdot1-3\cdot6+4\cdot3}=\dfrac{24}{-4}=-6\)
Do đó: x=-6; y=-36; z=-18
2: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{1.1}=\dfrac{y}{1.3}=\dfrac{z}{1.4}=\dfrac{2x-y}{2\cdot1.1-1.3}=\dfrac{5.5}{0.9}=\dfrac{55}{9}\)
Do đó: x=121/18; y=143/18; z=77/9
3: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-5}=20\)
Do đó: x=400; y=300; z=180
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{15}}=\dfrac{x+y-z}{\dfrac{1}{6}+\dfrac{1}{10}-\dfrac{1}{15}}=\dfrac{90}{\dfrac{1}{5}}=450\)
Do đó: x=75; y=45; z=30
câu 1 là 3x chứ có phải 3y đâu ạ (mình ghi lưu ý r ạ)
nếu là 3y thì giải thích được k ạ
\(h\left(x\right)=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1>0\forall x\)
Vậy h(x) không có nghiệm
\(m\left(x\right)=x^2+4x+11=\left(x^2+4x+4\right)+7=\left(x+2\right)^2+7>0\forall x\)
Vậy m(x) không có nghiệm
\(n\left(x\right)=x^2+6x+10=\left(x^2+6x+9\right)+1=\left(x+3\right)^2+1>0\forall x\)
Vậy n(x) không có nghiệm
\(p\left(x\right)=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
Vậy p(x) không có nghiệm
Tam giác BKC vuông tại K
=> BC2=BK2+KC2
<=> BK2=BC2-KC2=52-32=25-9=16
BK=4 cm
Chả nhẽ ko học đc Tiếng Việt?
"Bộ ba" Toán, Tiếng Việt, Tiếng Anh đang đứng lù lù ở kia!
Vì (2x-1)^6=(2x-1)^8
(2x-1)^8-(2x-1)^6=0
(2x-1)^6[(2x-1)^2-1)]=0
th1 (2x-1)^6 suy ra 2x-1=0 suy ra x=1/2
th2 (2x-1)^2-1=0
(2x-1)^2=1
suy ra 2x-1 bằng 1;-1
th1 2x-1=1 suy ra x=1
2x-1=-1 suy ra x=0
Bài 5:
f(x) có 1 nghiệm x - 2
=> f (2) = 0
\(\Rightarrow a.2^2-a.2+2=0\)
\(\Rightarrow4a-2a+2=0\)
=> 2a + 2 = 0
=> 2a = -2
=> a = -1
Vậy:....
P/s: Mỗi lần chỉ đc đăng 1 câu hỏi thôi! Bạn vui lòng đăng bài hình trên câu hỏi khác nhé!
a)Ta có △MIP cân tại M nên ˆMNI=ˆMPIMNI^=MPI^
Xét △MIN và △MIP có:
ˆNMI=ˆPMINMI^=PMI^
MI : cạnh chung
ˆMNI=ˆMPIMNI^=MPI^
Nên △MIN = △MIP (c.g.c)
b)Gọi O là giao điểm của EF và MI
Vì △MNP là tam giác cân và MI là đường phân giác của △MIP
Suy ra MI đồng thời là đường cao của △MNP
Nên ˆMOE=ˆMOF=90oMOE^=MOF^=90o
Xét △MOE vuông tại O và △MOF vuông tại O có:
OM : cạnh chung
ˆEMO=ˆFMOEMO^=FMO^(vì MI là đường phân giác của △MIP và O∈∈MI)
Suy ra △MOE = △MOF (cạnh góc vuông – góc nhọn kề)
Nên ME = MF
Vậy △MEF cân
tham khảo
Cách giải chung. Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\).
5. \(\frac{5a}{a+b}=\frac{5bk}{bk+b}=\frac{5k}{k+1}\)
\(\frac{5c}{c+d}=\frac{5dk}{dk+d}=\frac{5k}{k+1}\)
Suy ra đpcm.
6. \(\frac{a^2+3ab}{a^2-3b^2}=\frac{\left(bk\right)^2+3bk.b}{\left(bk\right)^2-3b^2}=\frac{k^2+3k}{k^2-3}\)
\(\frac{c^2+3cd}{c^2-3d^2}=\frac{\left(dk\right)^2+3dk.d}{\left(dk\right)^2-3d^2}=\frac{k^2+3k}{k^2-3}\)
Suy ra đpcm.
7, 8. Bạn làm tương tự.