Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2840 + [(999 - 9x) : 60 ] .24 = 3200
=> [(999-9x) : 60 ] . 24 = 2840 - 3200 = -360
=> (999 - 9x) = \(\frac{-360}{24}=-15\)
=> 9x = 999 - ( - 15) = 999 + 15 = 1014
=> x = \(\frac{1014}{9}=\frac{338}{3}\)
b) (3x - 48) . 6 = 33.22 - 23.32
(3x - 48) . 6 = 27 . 4 - 8 . 9
(3x -48).6 = 36
(3x - 48 = 36 : 6 = 6
3x = 54
x = 54 : 3 =18
t ick cho mik nha
3x/2.5 + 3x/5.8 + 3x/8.11 + 3x/11.14 = 1/21
=> x . ( 3/2.5 + 3/5.8 + 3/8.11 + 3/11.14 ) = 1/21
=> x . ( 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 ) = 1/21
x . ( 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 ) = 1/21
x . ( 1/2 - 1/14 ) = 1/21
x . 3/7 = 1/21
x = 1/21 : 3/7
=> x = 1/9
\(\frac{3x}{2\cdot5}+\frac{3x}{5\cdot8}+\frac{3x}{8\cdot11}+\frac{3x}{11\cdot14}=\frac{1}{21}\)
<=> \(x\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}\right)=\frac{1}{21}\)
<=> \(x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
<=> \(x\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)
<=> \(x\cdot\frac{3}{7}=\frac{1}{21}\)
<=> \(x=\frac{1}{9}\)
\(a,\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
vậy_____
Ta có : 13+ 23+...+1003 = (1+2+3+...+100)2
Đặt A = 1+2+3+...+100
⇒A= \(\dfrac{\left(100+1\right).100}{2}\) ⇔A= 5050
⇒50502 = (x-1)2 ⇔ x=5051
4 . x3 + 15 = 47
4 . x3 = 47 - 15
4 . x3 = 32
x3 = 32 : 4
x3 = 8
=> x = 2
4 . 2x - 3 = 125
4 . 2x = 125 + 3
4 . 2x = 128
2x = 128 : 4
2x = 32
=> x = 5
Ta có:1+2+3+....+x=210
=> (x+1).(x-1+1):2=210
=> (x+1).x:2=210
=> (x+1).x=210.2
=> x.(x+1)=420
=> x.(x+1)=22.3.5.7
=> x.(x+1)=20.21
=> x=20
\(1+2+3+...+x=210\Rightarrow\frac{x\cdot\left(x+1\right)}{2}=210\)
\(\Leftrightarrow x^2+x=420\Leftrightarrow x=20\)
\(\dfrac{1}{2}\) \(\times\) ( \(x\) - \(\dfrac{2}{3}\)) - \(\dfrac{1}{3}\) \(\times\) ( 2\(x\) - 3) = \(x\)
\(\dfrac{1}{2}\) \(\times\) \(\dfrac{3x-2}{3}\) - \(\dfrac{2x-3}{3}\) = \(x\)
\(\dfrac{3x-2}{6}\) - \(\dfrac{4x-6}{6}\) = \(\dfrac{6x}{6}\)
3\(x-2-4x\) + 6 = 6\(x\)
-\(x\) + 4 - 6\(x\) = 0
7\(x\) = 4
\(x\) = \(\dfrac{4}{7}\)
\(\frac{1}{3}+....+\frac{2}{x.\left(x+1\right)}=\frac{1999}{2001}\)
=>\(\frac{1}{2}.\left(\frac{1}{3}+...+\frac{2}{x.\left(x+1\right)}\right)=\frac{1999}{2001}.\frac{1}{2}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2001}\)
=> x=2000
Tìm stn biết: 1/3 + 1/6 + 1/10 + ...+2/x(x+1)=1999/2001
Bài giải: Gọi x là số tự nhiên cần tìm
Cho S= 1/3 + 1/6 +1/10 +...+ 1/x(x+1)
\(\Rightarrow\)S= 2/6 + 2/12+ 2/20 +...+ 2/2[x(x+1)]
\(\Rightarrow\)1/2S= 1/2.3 + 1/3.4 + 1/ 4.5 +...+1/2[x(x+1)]
\(\Rightarrow\)1/2S=1/2-1/3+1/3-1/4+...+1/(x-1) .(x+1)
\(\Leftrightarrow\)1/2S=1/2-1/x+1
Vì S = 1999 / 2001\(\Rightarrow\)1/2S=1/2-1 . (x+1)=1999/2001-1998-2001=1/2001
\(\Rightarrow\)1/x+1=1/2001
\(\Leftrightarrow\)x+1=2001
x =2001-1 =2000
Vậy số tự nhiên đó là: 2000
\(3^{x+1}+3^{x+2}+3^{x+3}-4.3^x=315\)
\(\Leftrightarrow3^x.3+3^x.3^2+3^x.3^3-4.3^x=315\)
\(\Leftrightarrow3^x.3+3^x.9+3^x.27-4.3^x=315\)
\(\Leftrightarrow3^x.\left(3+9+27-4\right)=315\)
\(\Leftrightarrow3^x.35=315\)\(\Leftrightarrow3^x=9\)
\(\Leftrightarrow3^x=3^2\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài làm :
Ta có :
\(3^{x+1}+3^{x+2}+3^{x+3}-4.3^x=315\)
\(\Leftrightarrow3^x.3+3^x.3^2+3^x.3^3-4.3^x=315\)
\(\Leftrightarrow3^x.3+3^x.9+3^x.27-4.3^x=315\)
\(\Leftrightarrow3^x.\left(3+9+27-4\right)=315\)
\(\Leftrightarrow3^x.35=315\)
\(\Leftrightarrow3^x=9\)
\(\Leftrightarrow3^x=3^2\)
\(\Leftrightarrow x=2\)
Vậy x=2