Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\widehat{aOn}+\widehat{mOn}+\widehat{mOb}=180^o\left(kề.bù\right)\\ \Leftrightarrow70^o+\widehat{mOn}+40^o=180^o\\ Vậy:\widehat{mOn}=180^o-\left(70^o+40^o\right)=70^o\\ b,Vì:\widehat{aOn}=\widehat{mOn}\\ Mà.tia.On.nằm.giữa.2.tia.Oa.và.Om.nên:\\ On.là.tia.phân.giác.góc.\widehat{aOm}\)
\(|2x-5|-|4x-7|=12\left(1\right)\)
Ta có:
\(2x-5=0\Leftrightarrow x=\frac{5}{2}\)
\(4x-7=0\Leftrightarrow x=\frac{7}{4}\)
Lập bảng xét dấu :
+) Với \(x< \frac{5}{2}\Rightarrow\hept{\begin{cases}2x-5< 0\\4x-7< 0\end{cases}\Rightarrow\hept{\begin{cases}|2x-5|=5-2x\\|4x-7|=7-4x\end{cases}\left(2\right)}}\)
Thay (2) vào (1) ta được :
\(\left(5-2x\right)-\left(7-4x\right)=12\)
\(5-2x-7+4x=12\)
\(-2+2x=12\)
\(2x=14\)
\(x=7\)( loại )
+) Với \(\frac{5}{2}\le x\le\frac{7}{4}\Rightarrow\hept{\begin{cases}2x-5>0\\4x-7< 0\end{cases}\Rightarrow\hept{\begin{cases}|2x-5|=2x-5\\|4x-7|=7-4x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(\left(2x-5\right)-\left(7-4x\right)=12\)
\(2x-5-7+4x=12\)
\(6x-12=12\)
\(6x=24\)
\(x=4\)(loại )
+) Với \(x>\frac{7}{4}\Rightarrow\hept{\begin{cases}2x-5>0\\4x-7>0\end{cases}\Rightarrow\hept{\begin{cases}|2x-5|=2x-5\\|4x-7|=4x-7\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(\left(2x-5\right)-\left(4x-7\right)=12\)
\(2x-5-4x+7=12\)
\(-2x+2=12\)
\(-2x=10\)
\(x=-5\)(loại )
Vậy ko có giá trị x nào thỏa mãn đầu bài.
Ta có
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)-1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{50}\)
\(=\frac{1}{51}+\frac{1}{52}+.....+\frac{1}{100}\)
=>.....
1 how many eggs does he want?
2 what does she often do in her free time?
3 it is cool in the winter
4 are there any trees near your house?
mk chuyên anh mà hehe
Câu 1:
\(\sqrt{16}=4\)
\(\sqrt{36}=6\)
\(\sqrt{81}=9\)
\(\sqrt{144}=12\)
\(\sqrt{625}=25\)
\(\sqrt{\dfrac{4}{9}}=\dfrac{2}{3}\)
\(\sqrt{\dfrac{36}{25}}=\dfrac{6}{5}\)
\(\sqrt{\dfrac{64}{49}}=\dfrac{8}{7}\)
\(\sqrt{\dfrac{169}{400}}=\dfrac{13}{20}\)
\(\sqrt{11\dfrac{1}{9}}=\sqrt{\dfrac{100}{9}}=\dfrac{10}{3}\)
\(\sqrt{1\dfrac{11}{25}}=\sqrt{\dfrac{36}{25}}=\dfrac{6}{5}\)
\(\sqrt{1\dfrac{13}{36}}=\sqrt{\dfrac{49}{36}}=\dfrac{7}{6}\)
Câu 2:
a) \(3.\sqrt{16}-4\sqrt{\dfrac{1}{4}}\)
\(=3.4-4.\dfrac{1}{2}\)
\(=4.\left(3-\dfrac{1}{2}\right)\)
\(=4.\dfrac{5}{2}\)
\(=10\)
b) \(-5\sqrt{\dfrac{9}{16}}+4\sqrt{0,36}-6\sqrt{0,09}\)
\(=-5.\dfrac{3}{4}+4.0,6-6.0,3\)
\(=\dfrac{-15}{4}+\dfrac{12}{5}-\dfrac{9}{5}\)
\(=\dfrac{-75+48-36}{20}=\dfrac{-63}{20}\)
c) \(2.\sqrt{9}-10.\sqrt{\dfrac{1}{25}}\)
\(=2.3-10.\dfrac{1}{5}\)
\(=6-2\)
\(=4\)
d) \(-3\sqrt{\dfrac{25}{16}}+5\sqrt{0,16}-7\sqrt{0,64}\)
\(=-3.\dfrac{5}{4}+5.0,4-7.0,8\)
\(=\dfrac{-15}{4}+2-\dfrac{28}{5}\)
\(=\dfrac{-75+40-28}{20}=\dfrac{-63}{20}\)
e) \(3\sqrt{25}-27\sqrt{\dfrac{4}{81}}\)
\(=3.5-27.\dfrac{2}{9}\)
\(=15-6\)
\(=9\)
f) \(-21\sqrt{\dfrac{100}{49}}+3\sqrt{0,04}-5\sqrt{0,25}\)
\(=-21.\dfrac{10}{7}+3.0,2-5.0,5\)
\(=-30+\dfrac{3}{5}-\dfrac{5}{2}\)
\(=\dfrac{-300+6-25}{10}=\dfrac{-319}{10}\)
h) \(5\sqrt{9}-4\sqrt{\dfrac{1}{16}}+6\sqrt{25}\)
\(=5.3-4.\dfrac{1}{4}+6.5\)
\(=15-1+30\)
\(=14+30\)
\(=44\)
g) \(10\sqrt{\dfrac{9}{25}}-14\sqrt{\dfrac{36}{49}}+24\sqrt{\dfrac{81}{64}}\)
\(=10.\dfrac{3}{5}-14.\dfrac{6}{7}+24.\dfrac{9}{8}\)
\(=6-12+27\)
\(=\left(-6\right)+27=21\)
Câu 3:
a) \(\sqrt{x}=7\)
\(=>x=49\)
b) \(\sqrt{x}=12\)
\(=>x=144\)
c) \(\sqrt{x}=15\)
\(=>x=225\)
d) \(\sqrt{x}=20\)
\(=>x=400\)
e) \(4\sqrt{x}=8\)
\(\sqrt{x}=8:4\)
\(\sqrt{x}=2\)
\(=>x=4\)
f) \(6\sqrt{x}=3\)
\(\sqrt{x}=\dfrac{3}{6}=\dfrac{1}{2}\)
\(=>x=\dfrac{1}{4}\)
g) \(\sqrt{x-1}=1\)
\(x-1=1\)
\(x=1+1\)
\(=>x=2\)
h) \(\sqrt{x+1}=2\)
\(x+1=4\)
\(x=4-1\)
\(=>x=3\)
i) \(\sqrt{x}-2=7\)
\(\sqrt{x}=7+2\)
\(\sqrt{x}=9\)
\(=>x=81\)
j) \(14-\sqrt{x}=12\)
\(\sqrt{x}=14-12\)
\(\sqrt{x}=2\)
\(=>x=4\)
k) \(12-\sqrt{x-1}=2\)
\(\sqrt{x-1}=12-2\)
\(\sqrt{x-1}=10\)
\(x-1=100\)
\(x=100+1\)
\(=>x=101\)
l) \(\sqrt{x+5}+10=20\)
\(\sqrt{x+5}=20-10\)
\(\sqrt{x+5}=10\)
\(x+5=100\)
\(x=100-5\)
\(=>x=95\)
# Wendy Dang
3:
a: ĐKXĐ: x>=0
\(\sqrt{x}=7\)
=>x=7^2=49
b: ĐKXĐ: x>=0
\(\sqrt{x}=12\)
=>x=12^2=144
c: ĐKXĐ: x>=0
\(\sqrt{x}=15\)
=>x=15^2=225
d: ĐKXĐ: x>=0
\(\sqrt{x}=20\)
=>x=20^2=400
e: ĐKXĐ: x>=0
\(4\sqrt{x}=8\)
=>\(\sqrt{x}=2\)
=>x=4
f: ĐKXĐ: x>=0
\(6\cdot\sqrt{x}=3\)
=>\(\sqrt{x}=\dfrac{3}{6}=\dfrac{1}{2}\)
=>x=1/4
g: ĐKXĐ: x>=1
\(\sqrt{x-1}=1\)
=>x-1=1
=>x=2
h: ĐKXĐ: x>=-1
\(\sqrt{x+1}=2\)
=>x+1=4
=>x=3
i: ĐKXĐ: x>=0
\(\sqrt{x}-2=7\)
=>\(\sqrt{x}=9\)
=>x=81
j: ĐKXĐ: x>=0
\(14-\sqrt{x}=12\)
=>\(\sqrt{x}=14-12=2\)
=>x=4
k: ĐKXĐ: x>=1
\(12-\sqrt{x-1}=2\)
=>\(\sqrt{x-1}=10\)
=>x-1=100
=>x=101
i: ĐKXĐ: x>=-5
\(\sqrt{x+5}+10=20\)
=>\(\sqrt{x+5}=10\)
=>x+5=100
=>x=95
\(125.5^2.\dfrac{1}{625}.5^3=5^3.5^2.\dfrac{1}{5^4}.5^3=5^{3+2-4+3}=5^4\\ 8.32.\left(2^4.\dfrac{1}{32}\right)=2^3.2^5.2^4.\dfrac{1}{2^5}=2^{3+5+4-5}=2^7\\ 6^3.5^2.\left(\dfrac{5}{6}\right)^3=6^3.5^2.5^3:6^3=5^{2+3}.6^{3-3}=5^5.6^0=5^5.1=5^5\\ Bài.5A\)
\(Bài.5B\\ a,2401.\left(\dfrac{1}{7}\right)^2.\dfrac{1}{7}.49^2=7^4.\left(\dfrac{1}{7}\right)^3.\left(7^2\right)^2=7^4.\dfrac{1}{7^3}.7^4=7^{4-3+4}=7^5\\ b,9.81:\left(3^5.\dfrac{1}{27}\right)=3^2.3^4:\left(3^5.\dfrac{1}{3^3}\right)=3^{2+4}:\left(3^{5-3}\right)=3^6:3^2=3^{6-2}=3^4\\ c,3^4.7^2.\left(\dfrac{7}{3}\right)^4=3^4.7^2.7^4:3^4=\left(3^4:3^4\right).\left(7^2.7^4\right)=1.7^6=7^6\)