Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề 1: TỰ LUẬN
Câu 1: sin 60o31' = cos 29o29'
cos 75o12' = sin 14o48'
cot 80o = tan 10o
tan 57o30' = cot 32o30'
sin 69o21' = cos 20o39'
cot 72o25' = 17o35'
- Chiều về mình làm cho nha nha Giờ mình đi học rồi Bạn có gấp lắm hông
3) Sửa ab+bc+ca/3 thành ab+bc+ca/2; Thêm đk: a;b;c > 0
Đặt \(A=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)
\(A=\dfrac{\dfrac{1}{a^2}}{a\left(b+c\right)}+\dfrac{\dfrac{1}{b^2}}{b\left(c+a\right)}+\dfrac{\dfrac{1}{c^2}}{c\left(a+b\right)}\)
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:
\(A\ge\dfrac{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\)
\(A\ge\dfrac{\dfrac{\left(bc+ac+ab\right)^2}{abc^2}}{2\left(ab+bc+ca\right)}=\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{2}\)
Dấu "=" xảy ra khi a = b = c = 1
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)
d: Để |A|>A thì A>0
=>\(\sqrt{x}-1>0\)
hay x>1
Lam cau C dung ko ? cau D) chua bt lam :V \
a) DKXD : x \(\ne\pm2\)
C)
Ta cos :
A = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
ma : A < \(\dfrac{5}{3}< =>\dfrac{\sqrt{x}+3}{\sqrt{x}-2}< \dfrac{5}{3}< =>3\left(\sqrt{x}+3\right)< 5\left(\sqrt{x}-2\right)< =>\) \(3\sqrt{x}+9< 5\sqrt{x}-10< =>-2\sqrt{x}< -19< =>\sqrt{x}>\dfrac{19}{2}=>x=\dfrac{361}{4}\)
Vay...............
Trình độ còn non quá :v
d/ A = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2+5}{\sqrt{x}-2}=1+\dfrac{5}{\sqrt{x}-2}\)
Để \(A\in Z\) \(\Rightarrow\dfrac{5}{\sqrt{x}-2}\in Z\)
\(\Rightarrow5⋮\sqrt{x}-2\) \(\Rightarrow\sqrt{x}-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{3;1;7;-3\right\}\)
\(\Rightarrow x\in\left\{9;1;49\right\}\)
câu a : căn hai phần 2-5x có nghĩa ↔2 phần 2-5x lớn hơn hoặc bằng 0 ↔2-5x lớn hơn 0↔x nhỏ hơn 2 phần 5 câu b: căn 5-2x phần x2 có nghĩa ↔5-2x >= 0↔ x<= 5 phần 2 câu c; căn 4-x2 có nghĩa ↔(2-x)(2+x) lớn hơn hoặc bằng 0 ↔x<=2 hoặc x >= -2 câu d;căn x2-1 có nghĩa ↔(x-1)(x+1)>=0↔x>=1 hoặc x>=-1
a, không nhìn rõ
b, \(\dfrac{a+2\sqrt{a}+1}{a-1}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)