K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Lời giải:
Bài toán tương đương với:
Tìm $m\in [-10;10]$ để $f(x)=(m+2)x^2-x+3m^2-2m$ với $x\in [0;+\infty)$ có GTLN.
Với $m=-2$ thì $f(x)=-x+16\leq 16$ với mọi $x\geq 0$ nên đạt gtln =16 tại $x=0$
Với $m>-2$ thì $f(x)$ là hàm bậc 2 có hệ số cao nhất dương. Đồng thời $x$ không bị chặn trên nên $f(x)$ không có gtln.
Với $m< -2$ thì $f'(x)=2x(m+2)-1<0$ với mọi $x\geq 0$
$\Rightarrow f(x)$ nghịch biến trên $[0;+\infty)$
$\Rightarrow f(x)\leq f(0)$ tức là hàm số có gtln.
Vậy $m\leq -2$. Tức là $m$ có thể nhận các giá trị $-2, -3, -4, -5, -6, -7, -8, -9,-10$, hay có 9 giá trị $m$ thỏa mãn.