K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9b: 

Kẻ OK vuông góc SA tại K

BD vuông góc AC

BD vuông góc SO

=>BD vuông góc (SAC)

=->BD vuông góc SA

mà OK vuông góc SA

nên SA vuông góc (BKD)

=>SA vuông góc BK; SA vuông góc KD

=>((SAB); (SAD))=(BK;KD)

ΔSAC vuông cân tại O nên OK=1/2SA=a/căn 3

ΔBKD cso KO=BO=OD=a/căn 3=1/2*BD

=>ΔBKD vuông tại K

=>góc BKD=90 độ

=>(SAB) vuông góc (SAD)

15 tháng 11 2023

a: Δ: 2x-y-1=0; A(-1;2)

B là ảnh của A qua phép đối xứng trục Δ

=>Δ là đường trung trực của AB

=>Δ vuông góc AB tại trung điểm H của AB

Đặt (d): ax+by+c=0 là phương trình đường thẳng AB

Δ: 2x-y-1=0

=>(d): x+y+c=0

Thay x=-1 và y=2 vào (d), ta được:

c-1+2=0

=>c+1=0

=>c=-1

=>(d): x+y-1=0

Tọa độ H là:

\(\left\{{}\begin{matrix}2x-y-1=0\\x+y-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-y=1\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=2\\x+y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=1-\dfrac{2}{3}=\dfrac{1}{3}\end{matrix}\right.\)

H là trung điểm của AB

=>\(\left\{{}\begin{matrix}x_B+x_A=2\cdot x_H\\y_B+y_A=2\cdot y_H\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_B-1=2\cdot\dfrac{2}{3}=\dfrac{4}{3}\\y_B+2=2\cdot\dfrac{1}{3}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B=\dfrac{4}{3}+1=\dfrac{7}{3}\\y_B=\dfrac{2}{3}-2=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy: B(7/3;-4/3)

b: (C): \(\left(x-1\right)^2+\left(y-2\right)^2=9\); Δ: 2x-y-1=0

=>R=3 và tâm I(1;2)

Gọi D là điểm đối xứng của I qua phép đối xứng trục Δ, gọi E là giao điểm của DI với trục Δ, (d1): ax+by+c=0 là phương trình đường thẳng DI

D đối xứng I qua phép đối xứng trục Δ

=>Δ là đường trung trực của DI

=>Δ vuông góc (d1) tại trung điểm E của DI

Δ: 2x-y-1=0

=>(d1): x+y+c=0

Thay x=1 và y=2 vào (d1), ta được:

c+1+2=0

=>c+3=0

=>c=-3

=>(d1): x+y-3=0

Tọa độ E là:

\(\left\{{}\begin{matrix}2x-y-1=0\\x+y-3=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-y=1\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\x+y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=3-\dfrac{4}{3}=\dfrac{5}{3}\end{matrix}\right.\)

E(4/3;5/3); I(1;2)

E là trung điểm của DI

=>\(\left\{{}\begin{matrix}x_D+x_I=2\cdot x_E\\y_D+y_I=2\cdot y_E\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_D+1=2\cdot\dfrac{4}{3}=\dfrac{8}{3}\\y_D+2=2\cdot\dfrac{5}{3}=\dfrac{10}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=\dfrac{5}{3}\\y_D=\dfrac{4}{3}\end{matrix}\right.\)

Phương trình đường tròn (T) là:

\(\left(x-\dfrac{5}{3}\right)^2+\left(y-\dfrac{4}{3}\right)^2=9\)

15 tháng 11 2023

Bạn ghi đầy đủ đề đi bạn ơi

NV
8 tháng 3 2021

\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{x+2017-\left(2015-x\right)}{\sqrt[3]{\left(x+2017\right)^2}+\sqrt[3]{\left(x+2017\right)\left(2015-x\right)}+\sqrt[3]{\left(2015-x\right)^2}}}{\dfrac{2000+x-\left(1998-x\right)}{\sqrt{2000+x}+\sqrt{1998-x}}}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{2000+x}+\sqrt{1998-x}}{\sqrt[3]{\left(x+2017\right)^2}+\sqrt[3]{\left(x+2017\right)\left(2015-x\right)}+\sqrt[3]{\left(2015-x\right)^2}}\)

\(=\dfrac{\sqrt{1999}+\sqrt{1999}}{\sqrt[3]{2016^2}+\sqrt[3]{2016^2}+\sqrt[3]{2016^2}}=\dfrac{2\sqrt{1999}}{3.24\sqrt[3]{294}}=\dfrac{\sqrt{1999}}{36\sqrt[3]{294}}\)

\(\Rightarrow a+b=1999+294\)

8 tháng 3 2021

undefined

NV
11 tháng 3 2022

1.

\(\lim\left(3-5n-7n^2\right)=\lim n^2\left(\dfrac{3}{n^2}-\dfrac{5}{n}-7\right)\)

Do \(\lim n^2=+\infty\)

\(\lim\left(\dfrac{3}{n^2}-\dfrac{5}{n}-7\right)=0-0-7=-7< 0\)

\(\Rightarrow\lim n^2\left(\dfrac{3}{n^2}-\dfrac{5}{n}-7\right)=-\infty\)

2.

\(\lim\left(3n+8n^2-5\right)=\lim n^2\left(\dfrac{3}{n}+8-\dfrac{5}{n^2}\right)\)

Do \(\lim n^2=+\infty\)

\(\lim\left(\dfrac{3}{n}+8-\dfrac{5}{n^2}\right)=0+8-0=8>0\)

\(\Rightarrow\lim n^2\left(\dfrac{3}{n}+8-\dfrac{5}{n^2}\right)=+\infty\)

3.

\(\lim\left(4-\dfrac{1}{n^5}+\dfrac{7}{n^3}\right)=4-0+0=4\)

5 tháng 4 2022

3-D

14:

sin 2a=(sina+cosa)^2-1

=m^2-1