K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{2x-4\sqrt{x}+2-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

\(=\dfrac{2x-4\sqrt{x}+2-2x+4\sqrt{x}+\sqrt{x}-2}{\sqrt{x}+2}\cdot\dfrac{1}{\sqrt{x}}\)

\(=\dfrac{1}{\sqrt{x}+2}\)

6 tháng 4 2023

Bài III.2b.

Phương trình hoành độ giao điểm của \(\left(P\right)\) và \(\left(d\right)\) : \(x^2=\left(m+1\right)x-m-4\)

hay : \(x^2-\left(m+1\right)x+m+4=0\left(I\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm nên phương trình \(\left(I\right)\) sẽ có hai nghiệm phân biệt. Do đó, phương trình \(\left(I\right)\) phải có : 

\(\Delta=b^2-4ac=\left[-\left(m+1\right)\right]^2-4.1.\left(m+4\right)\)

\(=m^2+2m+1-4m-16\)

\(=m^2-2m-15>0\).

\(\Rightarrow m< -3\) hoặc \(m>5\).

Theo đề bài : \(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)

\(\Rightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\left(2\sqrt{3}\right)^2=12\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\left(II\right)\)

Do phương trình \(\left(I\right)\) có hai nghiệm khi \(m< -3\) hoặc \(m>5\) nên theo định lí Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m+1\right)}{1}=m+1\\x_1x_2=\dfrac{c}{a}=\dfrac{m+4}{1}=m+4\end{matrix}\right.\).

Thay vào \(\left(II\right)\) ta được : \(m+1+2\sqrt{m+4}=12\)

Đặt \(t=\sqrt{m+4}\left(t\ge0\right)\), viết lại phương trình trên thành : \(t^2-3+2t=12\)

\(\Leftrightarrow t^2+2t-15=0\left(III\right)\).

Phương trình \(\left(III\right)\) có : \(\Delta'=b'^2-ac=1^2-1.\left(-15\right)=16>0\).

Suy ra, \(\left(III\right)\) có hai nghiệm phân biệt : 

\(\left\{{}\begin{matrix}t_1=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{-1+\sqrt{16}}{1}=3\left(t/m\right)\\t_2=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{-1-\sqrt{16}}{1}=-5\left(ktm\right)\end{matrix}\right.\)

Suy ra được : \(\sqrt{m+4}=3\Rightarrow m=5\left(ktm\right)\).

Vậy : Không có giá trị m thỏa mãn đề bài.

6 tháng 4 2023

Bài IV.b.

Chứng minh : Ta có : \(OB=OC=R\) nên \(O\) nằm trên đường trung trực \(d\) của \(BC\).

Theo tính chất hai tiếp tuyến cắt nhau thì \(IB=IC\), suy ra \(I\in d\).

Suy ra được \(OI\) là một phần của đường trung trực \(d\) của \(BC\) \(\Rightarrow OI\perp BC\) tại \(M\) và \(MB=MC\).

Xét \(\Delta OBI\) vuông tại \(B\) có : \(MB^2=OM.OI\).

Lại có : \(BC=MB+MC=2MB\)

\(\Rightarrow BC^2=4MB^2=4OM.OI\left(đpcm\right).\)

Tính diện tích hình quạt tròn

Ta có : \(\hat{BAC}=\dfrac{1}{2}sđ\stackrel\frown{BC}\Rightarrow sđ\stackrel\frown{BC}=2.\hat{BAC}=2.70^o=140^o\) (góc nội tiếp).

\(\Rightarrow S=\dfrac{\pi R^2n}{360}=\dfrac{\pi R^2.140^o}{360}=\dfrac{7}{18}\pi R^2\left(đvdt\right)\)

 

11 tháng 10 2023

Câu 2 :

Ta có : \(AH=HB.HC\) (Hệ thức lượng trong \(\Delta ABC\))

\(\Rightarrow AH=3.9=27\left(cm\right)\)

Xét \(\Delta ABH\perp\) tại H có :

\(AB^2=HB^2+AH^2\) \(\left(d/lPytago\right)\)

\(\Rightarrow AB^2=9^2+27^2=810\)

\(\Rightarrow AB=\sqrt{810}=9\sqrt{10}\left(cm\right)\)

Vậy \(AB=9\sqrt{10}cm\)

23 tháng 10 2021

\(21,\\ b,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=2\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\\ \Leftrightarrow\left|\sqrt{x-1}-1\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=2\\1-\sqrt{x-1}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\\sqrt{x-1}=-1\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=10\)

8 tháng 6 2021

Nãy ghi nhầm =="

a)Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

Thay `m=1` vào pt ta có:

`x^2-2x-2-1=0`

`<=>x^2-2x-3=0`

`a-b+c=0`

`=>x_1=-1,x_2=3`

`=>y_1=1,y_2=9`

`=>(-1,1),(3,9)`

Vậy tọa độ gđ (d) và (P) là `(-1,1)` và `(3,9)`

b)

Hđ gđ là nghiệm pt

`x^2=2x+2m+1`

`<=>x^2-2x-2m-1=0`

PT có 2 nghiệm pb

`<=>Delta'>0`

`<=>1+2m+1>0`

`<=>2m> -2`

`<=>m> 01`

Áp dụng hệ thức vi-ét:`x_1+x_2=2,x_1.x_2=-2m-1`

Theo `(P):y=x^2=>y_1=x_1^2,y_2=x_2^2`

`=>x_1^2+x_2^2=14`

`<=>(x_1+x_2)^2-2x_1.x_2=14`

`<=>4-2(-2m-1)=14`

`<=>4+2(2m+1)=14`

`<=>2(2m+1)=10`

`<=>2m+1=5`

`<=>2m=4`

`<=>m=2(tm)`

Vậy `m=2` thì ....

a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4m^2-16m+16+8=\left(2m-4\right)^2+8>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

b: Để phương trình có hai nghiệm trái dấu thì 2m-5<0

hay m<5/2

11 tháng 5 2022

tui tưởng phải dùng \(\dfrac{\Delta>0 }{\dfrac{x1x2< 0}{x1+x2>0}}\)

23 tháng 2 2021

Thay m=2 vào HPT ta có: 

\(\left\{{}\begin{matrix}2x+y=1\\x+2y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}4x+2y=2\\x+2y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}4x+2y=2\\3x=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

23 tháng 2 2021

b) \(\left\{{}\begin{matrix}mx+y=1\\x+my=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=1-mx\\x+m\left(1-mx\right)=1\left(1\right)\end{matrix}\right.\)

(1) ⇔x+m-m2x=1

⇔x(1-m2)=1-m (2)

TH1: 1-m2 = 0

⇔m = +- 1

Thay m=1 vào (2) ta có: 0x=0 (Luôn đúng) ⇒m=1 (chọn)

Thay m=-1 vào (2) ta có: 0x=2 (Vô lí) ⇒m=-1 (loại)

TH2: 1-m2 ≠0

⇔m≠ +-1

⇒HPT có nghiệm duy nhất:

x=  \(\dfrac{1-m}{1-m^2}\)

⇒y= \(1-m.\dfrac{1-m}{1-m^2}\)

⇔y=\(\dfrac{1-m}{1-m^2}\)

Dễ thấy x=y nên: 

\(\dfrac{1-m}{1-m^2}>0\)

⇔1-m>0

⇔m<1

Vậy m <1 thì Thỏa mãn yêu cầu đề bài.

 

 

 

22 tháng 11 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>AH=6(cm)

BC=BH+CH

=4+9

=13(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\\AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có \(tanABC=\dfrac{AC}{AB}=\dfrac{3}{2}\)

nên \(\widehat{ABC}\simeq56^0\)

b: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

\(AE\cdot AB+AF\cdot AC=AH^2+AH^2=2AH^2=2FE^2\)