K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2023

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  

a: Xét ΔADH vuông tại H và ΔBDA vuông tại A có

\(\widehat{ADH}\) chung

Do đó: ΔADH∼ΔBDA

b: Xét ΔHAD vuông tại H và ΔHBA vuông tại H có 

\(\widehat{HAD}=\widehat{HBA}\)

Do đó: ΔHAD∼ΔHBA

Suy ra: HA/HB=HD/HA

hay \(HA^2=HB\cdot HD\)

11 tháng 3 2022

a) Xét \(\Delta ADH\) và \(\Delta BDA:\)

\(\widehat{H}=\widehat{A}\left(=90^o\right).\)

\(\widehat{D}\) chung.

\(\Rightarrow\Delta ADH\sim\Delta BDA\left(g-g\right).\)

b) Xét \(\Delta BDA\) và \(\Delta BAH:\)

\(\widehat{BAD}=\widehat{BHA}\left(=90^o\right).\)

\(\widehat{B}\) chung.

\(\Rightarrow\Delta BDA\sim\) \(\Delta BAH\left(g-g\right).\)

Mà \(\Delta ADH\sim\Delta BDA\left(cmt\right).\)

\(\Rightarrow\Delta ADH\sim\Delta BAH.\)

\(\Rightarrow\dfrac{AH}{BH}=\dfrac{DH}{AH}\) (2 cạnh tương ứng).

\(\Rightarrow AH^2=DH.BH.\)

10 tháng 11 2021

Bài 2:

\(a,=x\left(x+7\right)\\ b,=x\left(x^2+4x+4\right)=x\left(x+2\right)^2\)

Bài 3:

\(a,\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^2-x-2x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Bài 4:

\(a,\widehat{D}=360^0-\widehat{A}-\widehat{B}-\widehat{C}=150^0\)

\(b,\dfrac{x+10}{2}=12\Leftrightarrow x+10=24\Leftrightarrow x=14\left(cm\right)\)

10 tháng 11 2021

Ai sẽ giúp m chứ??

2:

Gọi số sách lúc đầu ở tủ 1 và tủ 2 lần lượt là a,b

Theo đề, ta có: 

a+b=600 và a-80=1/2(b+80)

=>a=280 và b=320

10 tháng 5 2022

a.\(A=\left(\dfrac{x^2-3}{x^2-9}+\dfrac{1}{x-3}\right):\dfrac{x}{x+3}\)

\(A=\left(\dfrac{x^2-3+\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{x}{x+3}\)

\(A=\left(\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\right).\dfrac{x+3}{x}\)

\(A=\dfrac{\left(x^2+x\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x\left(x+1\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{x+1}{x-3}\)

b.\(A=3\)

\(\Leftrightarrow\dfrac{x+1}{x-3}=3\)

\(\Leftrightarrow\dfrac{x+1}{x-3}=\dfrac{3\left(x-3\right)}{x-3}\)

\(\Leftrightarrow x+1=3\left(x-3\right)\)

\(\Leftrightarrow x+1=3x-9\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\left(tm\right)\)

Vậy \(x=5\) thì \(A=3\)

10 tháng 5 2022

     `[x+1]/2021+[x+2]/2020+[x+3]/2019+[x+4]/2018=-4`

`<=>[x+1]/2021+1+[x+2]/2020+1+[x+3]/2019+1+[x+4]/2018+1=-4+4`

`<=>[x+1+2021]/2021+[x+2+2020]/2020+[x+3+2019]/2019+[x+4+2018]/2018=0`

`<=>[x+2022]/2021+[x+2022]/2020+[x+2022]/2019+[x+2022]/2018=0`

`<=>(x+2022)(1/2021+2020+1/2019+1/2018)=0`

      Mà `1/2021+2020+1/2019+1/2018  \ne 0`

   `=>x+2022=0`

`<=>x=-2022`

Vậy `S={-2022}`

10 tháng 5 2022

Cảm ơn bạn 

4: \(D=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

8 tháng 11 2021

\(A=\left(x^2-6x+9\right)-7=\left(x-3\right)^2-7\ge7\\ A_{min}=7\Leftrightarrow x=3\\ B=\left(9x^2+6x+1\right)-4=\left(3x+1\right)^2-4\ge-4\\ B_{min}=-4\Leftrightarrow x=-\dfrac{1}{3}\\ C=\left(x^2-2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{5}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\\ C_{min}=-\dfrac{9}{4}\Leftrightarrow x=\dfrac{5}{2}\\ D=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ D_{min}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

\(E=3\left(x^2+2\cdot\dfrac{1}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x+\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\\ E_{min}=-\dfrac{4}{3}\Leftrightarrow x=-\dfrac{1}{3}\\ F=x^2-2x+1+x^2-4x+4+2021\\ F=2\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{4031}{2}=2\left(x-\dfrac{3}{2}\right)^2+\dfrac{4031}{2}\ge\dfrac{4031}{2}\\ F_{min}=\dfrac{4031}{2}\Leftrightarrow x=\dfrac{3}{2}\)

3 tháng 9 2021

 x xen giữa là dấu nhân hay x vậy bn

3 tháng 9 2021

Dấu nhân bạn ạ

20 tháng 11 2023

Bài 2:

1: ĐKXĐ: x<>1

\(\dfrac{x}{x-1}+\dfrac{1}{1-x}\)

\(=\dfrac{x}{x-1}-\dfrac{1}{x-1}\)

\(=\dfrac{x-1}{x-1}=1\)

2: ĐKXĐ: x<>3/2

\(\dfrac{11x}{2x-3}-\dfrac{x-18}{3-2x}\)

\(=\dfrac{11x}{2x-3}+\dfrac{x-18}{2x-3}\)

\(=\dfrac{11x+x-18}{2x-3}=\dfrac{12x-18}{2x-3}\)

\(=\dfrac{6\left(2x-3\right)}{2x-3}\)

=6

3: ĐKXĐ: x<>1/2

\(\dfrac{4x+5}{2x-1}+\dfrac{5-9x}{1-2x}\)

\(=\dfrac{4x+5}{2x-1}+\dfrac{9x-5}{2x-1}\)

\(=\dfrac{4x+5+9x-5}{2x-1}=\dfrac{13x}{2x-1}\)

4: ĐKXĐ: x<>2/5

\(\dfrac{2x-7}{10x-4}-\dfrac{3x+5}{4-10x}\)

\(=\dfrac{2x-7}{10x-4}+\dfrac{3x+5}{10x-4}\)

\(=\dfrac{2x-7+3x+5}{10x-4}=\dfrac{5x-2}{10x-4}=\dfrac{1}{2}\)

5: ĐKXĐ: \(x\ne\pm y\)

\(\dfrac{xy}{x^2-y^2}-\dfrac{x^2}{y^2-x^2}\)

\(=\dfrac{xy}{x^2-y^2}+\dfrac{x^2}{x^2-y^2}\)

\(=\dfrac{x\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{x}{x-y}\)

6: ĐKXĐ: \(x\notin\left\{0;7\right\}\)

\(\dfrac{4x+13}{5x\left(x-7\right)}-\dfrac{x-48}{5x\left(7-x\right)}\)

\(=\dfrac{4x+13}{5x\left(x-7\right)}+\dfrac{x-48}{5x\left(x-7\right)}\)

\(=\dfrac{4x+13+x-48}{5x\left(x-7\right)}\)

\(=\dfrac{5x-35}{x\left(5x-35\right)}=\dfrac{1}{x}\)

7: ĐKXĐ: \(x\ne1\)

\(\dfrac{x+2}{x-1}-\dfrac{x-9}{1-x}-\dfrac{x-9}{1-x}\)

\(=\dfrac{x+2}{x-1}+\dfrac{x-9}{x-1}+\dfrac{x-9}{x-1}\)

\(=\dfrac{x+2+x-9+x-9}{x-1}=\dfrac{3x-16}{x-1}\)

8: ĐKXĐ:x<>1

\(\dfrac{2x^2-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)

\(=\dfrac{2x^2-x}{x-1}-\dfrac{x+1}{x-1}+\dfrac{2-x^2}{x-1}\)

\(=\dfrac{2x^2-x-x-1+2-x^2}{x-1}=\dfrac{x^2-2x+1}{x-1}\)

=x-1

9: ĐKXĐ: x<>3

\(\dfrac{4-x^2}{x-3}+\dfrac{2x-x^2}{3-x}+\dfrac{5-4x}{x-3}\)

\(=\dfrac{4-x^2}{x-3}+\dfrac{x^2-2x}{x-3}+\dfrac{5-4x}{x-3}\)

\(=\dfrac{4-x^2+x^2-2x+5-4x}{x-3}=\dfrac{-6x+9}{x-3}\)

10: ĐKXĐ: x<>5

\(\dfrac{x+1}{x-5}+\dfrac{x-18}{5-x}+\dfrac{x+2}{x-5}\)

\(=\dfrac{x+1}{x-5}-\dfrac{x-18}{x-5}+\dfrac{x+2}{x-5}\)

\(=\dfrac{x+1-x+18+x+2}{x-5}=\dfrac{3x-15}{x-5}=3\)

20 tháng 11 2023

1: \(\dfrac{15x}{7y^3}\cdot\dfrac{2y^2}{x^2}\)

\(=\dfrac{15x\cdot2y^2}{7y^3\cdot x^2}=\dfrac{30xy^2}{7x^2y^3}=\dfrac{30}{7xy}\)

2: \(\dfrac{6x^3}{7y^4}\cdot\dfrac{35y^2}{24x}\)

\(=\dfrac{6x^3}{24x}\cdot\dfrac{35y^2}{7y^4}\)

\(=\dfrac{x^2}{4}\cdot\dfrac{5}{y^2}=\dfrac{5x^2}{4y^2}\)

3: \(\dfrac{4y^2}{x^4}\cdot\dfrac{-3x^2}{8y}\)

\(=\dfrac{4y^2}{8y}\cdot\dfrac{-3x^2}{x^4}=\dfrac{y}{2}\cdot\dfrac{-3}{x^2}=\dfrac{-3y}{2x^2}\)

4: \(\dfrac{-18y^3}{25x^4}:\dfrac{9y^3}{-15x^2}\)

\(=\dfrac{18y^3}{25x^4}\cdot\dfrac{15x^2}{9y^3}\)

\(=\dfrac{18y^3}{9y^3}\cdot\dfrac{15x^2}{25x^4}=2\cdot\dfrac{3}{5x^2}=\dfrac{6}{5x^2}\)

5: \(\dfrac{8y^2}{9x^2}:\dfrac{4y}{3x^2}\)

\(=\dfrac{8y^2}{9x^2}\cdot\dfrac{3x^2}{4y}=\dfrac{8y^2}{4y}\cdot\dfrac{3x^2}{9x^2}=\dfrac{1}{3}\cdot2y=\dfrac{2y}{3}\)

6: \(\dfrac{-20x}{3y^2}:\dfrac{-4x^3}{5y}\)

\(=\dfrac{20x}{3y^2}:\dfrac{4x^3}{5y}\)

\(=\dfrac{20x}{3y^2}\cdot\dfrac{5y}{4x^3}=\dfrac{20x}{4x^3}\cdot\dfrac{5y}{3y^2}=\dfrac{5}{3y}\cdot\dfrac{5}{x^2}=\dfrac{25}{3x^2y}\)

7: \(\dfrac{\left(x+4\right)^2}{4x+12}:\dfrac{x+4}{3x+9}\)

\(=\dfrac{\left(x+4\right)^2}{4\left(x+3\right)}:\dfrac{x+4}{3\left(x+3\right)}\)

\(=\dfrac{\left(x+4\right)^2}{4\left(x+3\right)}\cdot\dfrac{3\left(x+3\right)}{x+4}=\dfrac{3\left(x+4\right)}{4}\)

8: \(\dfrac{5x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)

\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}\)

\(=\dfrac{5\cdot\left(-2\right)}{4}=-\dfrac{10}{4}=-\dfrac{5}{2}\)

9: \(\dfrac{x^2-36}{2x+10}\cdot\dfrac{3}{6-x}\)

\(=\dfrac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\dfrac{-3}{x-6}\)

\(=\dfrac{-3\left(x+6\right)}{2\left(x+5\right)}\)

10: \(\dfrac{x^2-4}{x^2-x}:\dfrac{x^2+2x}{x-1}\)

\(=\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-1\right)}\cdot\dfrac{x-1}{x\left(x+2\right)}\)

\(=\dfrac{\left(x-2\right)}{x^2\left(x+2\right)}\)