K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2022

ĐKXĐ :\(\left\{{}\begin{matrix}x+1\ge0\\x^2+1\ge0\end{matrix}\right.\Leftrightarrow x\ge-1\)

Khi đó \((x^2+4x+5)\sqrt{x+1}=(3x^2-8x-5)\sqrt{x^2+1}\)

\(\Leftrightarrow(x^2+1)\sqrt{x+1}+4(x+1)\sqrt{x+1}=3(x^2+1)\sqrt{x^2+1}-8(x+1)\sqrt{x^2+1}\)

Đặt \(\sqrt{x+1}=a;\sqrt{x^2+1}=b(a\ge0;b>0)\)

Phương trình trở thành :

\(4a^3+ab^2=3b^3-8a^2b\)

\(\Leftrightarrow4(a^3+b^3)+b(8a^2+ab-7b^2)=0\)

\(\Leftrightarrow(a+b)(4a^2-4ab+4b^2)+(a+b)(8ab-7b^2)=0\)

\(\Leftrightarrow(a+b)(4a^2+4ab-3b^2)=0\)

\(\Leftrightarrow\left(a+b\right)\left(2a-b\right)\left(2a+3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0(\text{loại})\\2a-b=0\\2a+3b=0(\text{loại})\end{matrix}\right.\Leftrightarrow2a=b\) (vì \(\left\{{}\begin{matrix}a\ge0\\b>0\end{matrix}\right.\) nên a+b>0 ; 2a +3b > 0)

Trở lại cách đặt ta được 

\(2\sqrt{x+1}=\sqrt{x^2+1}\Leftrightarrow x^2-4x-3=0\)

\(\Leftrightarrow x=\pm\sqrt{7}+2\) (loại \(x=-\sqrt{7}+2\))

Vậy x = \(\sqrt{7}+2\) là nghiệm phương trình

 

31 tháng 10 2021

Bài 5: 

a: BC=10cm

b: HA=4,8cm

HB=3,6(cm)

HC=6,4(cm)

31 tháng 10 2021

Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi 

1:

a: =>(x-1)(x-7)=0

=>x=1 hoặc x=7

b: =>x(x^2-9x+8)=0

=>x(x-1)(x-8)=0

=>\(x\in\left\{0;1;8\right\}\)

c: Đặt 1/căn x-7=a; 1/căn y+6=b

Theo đề, ta có:

7a-4b=5/3 và 5a+3b=13/6

=>a=1/3 và b=1/6

=>x-7=9 và y+6=36

=>x=16 và y=30

Bài 3:

a: Δ=(2m+3)^2-4(m^2+3m+2)

=4m^2+12m+9-4m^2-12m-8=1>0

=>PT luôn có hai nghiệm pb

b: x1^2+x2^2=1

=>(x1+x2)^2-2x1x2=1

=>(2m+3)^2-2(m^2+3m+2)=1

=>4m^2+12m+9-2m^2-6m-4-1=0

=>2m^2+6m+4=0

=>m=-1 hoặc m=-2

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó:AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA⊥BC

Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

NV
3 tháng 5 2021

Phương trình (D) có dạng:

\(y=k\left(x-1\right)-2\Leftrightarrow y=kx-k-2\)

Phương trình hoành độ giao điểm (P) và (D):

\(-\dfrac{x^2}{4}=kx-k-2\Leftrightarrow x^2+4kx-4\left(k+2\right)=0\) (1)

\(\Delta'=4k^2+4\left(k+2\right)=\left(2k+1\right)^2+7>0\) ; \(\forall k\)

\(\Rightarrow\) (1) luôn có 2 nghiệm pb hay (D) luôn cắt (P) tại 2 điểm pb A và B

b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-4k\\x_Ax_B=-4\left(k+2\right)\end{matrix}\right.\)

Đặt \(A=x_A^2x_B+x_Ax_B^2=x_Ax_B\left(x_A+x_B\right)\)

\(A=-4\left(k+2\right).\left(-4k\right)=16\left(k^2+2k\right)=16\left(k+1\right)^2-16\ge-16\)

\(\Rightarrow A_{min}=-16\) khi \(k+1=0\Leftrightarrow k=-1\)

3 tháng 5 2019

Gấp lắm giúp mình

3 tháng 5 2019

\(\sqrt{7x}\)hay là \(\sqrt{7x+5}\)

Bài 5: 

Xét ΔADC vuông tại D có DO là đường cao ứng với cạnh huyền AC

nên \(\left\{{}\begin{matrix}AD^2=AO\cdot AC\\DC^2=CO\cdot CA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AO=7,2\left(cm\right)\\CO=12,8\left(cm\right)\end{matrix}\right.\)

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>\(\widehat{AMB}=90^0\)

b: Xét ΔOMC vuông tại M có MH là đường cao

nên \(HC\cdot HO=HM^2\left(1\right)\)

Xét ΔMAB vuông tại M có MH là đường cao

nên \(HA\cdot HB=HM^2\left(2\right)\)

Từ (1) và (2) suy ra \(HC\cdot HO=HA\cdot HB\)

c: Xét tứ giác AMBQ có

O là trung điểm của AB và MQ

Do đó: AMBQ là hình bình hành

Hình bình hành AMBQ có AB=MQ

nên AMBQ là hình bình hành

19 tháng 7 2017

hix méo có ai làm đc à @@ hay là chỉ là cái lướt nhẹ qua = =

27 tháng 10 2021

a: Thay \(x=9+4\sqrt{2}\) vào A, ta được:

\(A=\dfrac{2\sqrt{2}+1+7}{2\sqrt{2}+1-1}=\dfrac{8+2\sqrt{2}}{2\sqrt{2}}=2\sqrt{2}+1\)