K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

Viết đề dài quá mk ko đc đc nên hơi lâu ( cái này dẽ mà cũng phải hỏi)

\(3x^2-3xy-6x+6y=3x\left(x-y\right)-6\left(x-y\right)\)

                                          \(=3\left(x-2\right)\left(x-y\right)\)

\(2x\left(y-1\right)-5y\left(y-1\right)=\left(2x-5y\right)\left(y-1\right)\)

21 tháng 8 2017

\(10x\left(x-y\right)-8y\left(y-x\right)=10x\left(x-y\right)+8y\left(x-y\right)\)

                                                    \(=\left(x-y\right)\left(10x+8y\right)\)

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

16 tháng 7 2021

a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)

áp dụng tính chất dãy tỉ số = nhau

\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)

\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)

\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)

\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)

b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)

có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)

\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)

áp dụng t/c dãy tỉ số = nhau

\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)

\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)

\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)

\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)

c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)

\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)

thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(=>y=2\)

\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)

d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)

thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)

\(=>x=\dfrac{2.3}{3}=2\)

 

 

16 tháng 7 2021

c, từ đoạn này á

\(\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)

\(< =>\dfrac{y^3}{8}+\dfrac{8y^3}{8}+\dfrac{27y^3}{8}=36\)

\(=>\dfrac{36y^3}{8}=36=>36y^3=8.36=>y^3=8=>y=2\)

21 tháng 8 2017

x-5/2<0

=>x>5/2

7-x/3>

=>x/3<7

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

2:

a: A(x)=0

=>5x-10-2x-6=0

=>3x-16=0

=>x=16/3

b: B(x)=0

=>5x^2-125=0

=>x^2-25=0

=>x=5 hoặc x=-5

c: C(x)=0

=>2x^2-x-3=0

=>2x^2-3x+2x-3=0

=>(2x-3)(x+1)=0

=>x=3/2 hoặc x=-1

12 tháng 3 2022

1, Thay x = 1/3 ; y = -1/5 ta được 

\(=\dfrac{3.1}{9}-5\left(-\dfrac{1}{5}\right)+1=\dfrac{1}{3}+2=\dfrac{7}{3}\)

2, Thay x = -2 ; y = -1/2 ta được 

\(=5.4\left(-\dfrac{1}{2}\right)+3\left(-2\right)\left(-\dfrac{1}{2}\right)-\dfrac{2\left(-2\right).1}{4}\)

\(=-10+3+1=-6\)

Tương tự đến hết, kiểm tra lại hộ mk nhé ! 

\(\hept{\begin{cases}3x+2y=7y-3x\\x-y=10\end{cases}\Leftrightarrow\hept{\begin{cases}6x-5y=0\left(1\right)\\x=10+y\left(2\right)\end{cases}}}\)

Thay vào phương trình 1 ta có : 

\(6\left(10+y\right)-5y=0\)

\(\Leftrightarrow60+6y-5y=0\Leftrightarrow60+y=0\Leftrightarrow y=-60\)

Thay vào x ta đc : \(x=10+\left(-60\right)=-50\)

à mk xin lỗi d ko áp dụng đc 

\(6x=4y=3z=\frac{x}{4}=\frac{y}{6};\frac{y}{3}=\frac{z}{4}\)

Ta có : \(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : 

\(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}=\frac{x+y+z}{12+18+24}=\frac{18}{54}=\frac{1}{3}\)

Làm nốt nhé ! 

10 tháng 3 2022

nhóm 1: \(\dfrac{5}{3}x^2y;\dfrac{-1}{3}x^2y;x^2y;\dfrac{-2}{5}x^2y\)

nhóm 2: \(xy^2;-2xy^2;\dfrac{1}{4}xy^2\)

nhóm 3: xy

10 tháng 3 2022

2.\(25xy^2+55xy^2+75xy^2=155xy^2\)

14 tháng 2 2018

Ta có số nguyên âm lớn nhất là -1 => y = -1

Thay x = \(\frac{1}{2}\); y = -1 vào biểu thức, ta có:

\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)\(\frac{\left(\frac{1}{2}\right)^3-3\left(\frac{1}{2}\right)^2+0,25\left(\frac{1}{2}\right)\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)\(\frac{\frac{1}{8}-3.\frac{1}{4}+\frac{1}{4}-4}{\frac{1}{4}-1}\)

\(\frac{\frac{1}{8}-1-4}{\frac{-3}{4}}\)\(\frac{\frac{-7}{8}+\frac{1}{4}-4}{\frac{-3}{4}}\)\(\frac{\frac{-7+2-32}{8}}{\frac{-3}{4}}\)\(\frac{\frac{-37}{8}}{\frac{-3}{4}}\)\(\frac{-37}{8}\left(\frac{-4}{3}\right)\)\(\frac{37}{6}\)

Vậy khi x = \(\frac{1}{2}\)và y là số nguyên âm lớn nhất thì A có giá trị là \(\frac{37}{6}\)