Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k$
$\Rightarrow a=bk, c=dk$. Khi đó:
$\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b(k-1)}{b}=k-1(1)$
$\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d(k-1)}{d}=k-1(2)$
Từ $(1); (2)\Rightarrow \frac{a-b}{b}=\frac{c-d}{d}$
-------------------
$\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b(2k+3)}{b(2k-3)}=\frac{2k+3}{2k-3}(3)$
$\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d(2k+3)}{d(2k-3)}=\frac{2k+3}{2k-3}(4)$
Từ $(3); (4)\Rightarrow \frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}$
Đặt :
\(A=-9x^2-6x-3\)
\(\Rightarrow A=-\left(3x\right)^2-2.3x.1-1^2-2\)
\(\Rightarrow A=-\left(3x-1\right)^2-2\)
Ta có : \(-\left(3x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(3x-1\right)^2-2\le-2\)
Dấu " = " xảy ra khi x = 1/3
Vậy .............
22a+3b=1 (1)
12a-7b=-9 (2)
Lấy (1)-(2),vế theo vế ta được:
(22a+3b)-(12a-7b)=1-(-9)
=>22a+3b-12a+7b=1+9=10
=>(22a-12a)+(3b+7b)=10
=>10a+10b=10
=>10.(a+b)=10=>a+b=1
Khi đó trung bình cộng của a và b=\(\frac{a+b}{2}=\frac{1}{2}=0,5\)
Vậy.....
Lời giải:
a. Với $n$ nguyên khác -3, để $B$ nguyên thì:
$2n+9\vdots n+3$
$\Rightarrow 2(n+3)+3\vdots n+3$
$\Rightarrow 3\vdots n+3$
$\Rightarrow n+3\in\left\{\pm 1; \pm 3\right\}$
$\Rightarrow n\in\left\{-2; -4; 0; -6\right\}$
b.
$B=\frac{2n+9}{n+3}=\frac{2(n+3)+3}{n+3}=2+\frac{3}{n+3}$
Để $B_{\max}$ thì $\frac{3}{n+3}$ max
Điều này đạt được khi $n+3$ là số nguyên dương nhỏ nhất
Tức là $n+3=1$
$\Leftrightarrow n=-2$
c. Để $B$ min thì $\frac{3}{n+3}$ min
Điều này đạt được khi $n+3$ là số nguyên âm lớn nhất
Tức là $n+3=-1$
$\Leftrightarrow n=-4$
\(\frac{\sqrt{49}}{6}< \left|x-\frac{2}{3}\right|< \frac{26}{\sqrt{81}}\)
\(\Rightarrow\frac{7}{6}< \left|x-\frac{2}{3}\right|< \frac{26}{9}\)
\(\Rightarrow\frac{21}{18}< \left|x-\frac{12}{18}\right|< \frac{52}{18}\)
còn lại cậu tự tính nha
\(\frac{\sqrt{49}}{6}< \left|x-\frac{2}{3}\right|< \frac{26}{\sqrt{81}}\)
\(\frac{7}{6}< x-\frac{2}{3}< \frac{26}{9}\)
\(\frac{11}{6}< x< \frac{32}{9}\)