Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a.
AB = AC (gt)
=> Tam giác ABC cân tại A
AN = NB = \(\frac{AB}{2}\) (N là trung điểm của AB)
AM = MC = \(\frac{AC}{2}\) (M là trung điểm của AC)
mà AB = AC (tam giác ABC cân tại A)
=> AM = MC = AN = NB
Xét tam giác ABM và tam giác ACN có:
AM = AN (chứng minh trên)
A là góc chung
AB = AC (tam giác ABC cân tại A)
=> Tam giác ABM = Tam giác ACN (c.g.c)
Xét tam giác BNC và tam giác CMB có:
BN = CN (chứng minh trên)
NBC = MCB (tam giác ABC cân tại A)
BC là cạnh chung
=> Tam giác BNC = Tam giác CMB (c.g.c)
b.
MB = ME (M là trung điểm của BE)
NC = NF (N là trung điểm của CF)
mà MB = NC (tam giác BNC = tam giác CMB)
=> ME = NF
ANF = BNC (2 góc đối đỉnh)
AME = CMB (2 góc đối đỉnh)
mà BNC = CMB (tam giác BNC = CMB)
=> ANF = AME
Xét tam giác ANF và tam giác AME có:
AN = AM (chứng minh trên)
ANF = AME (chứng minh trên)
NF = ME (chứng minh trên)
=> Tam giác ANF = tam giác AME (c.g.c)
=> AF = AE (2 cạnh tương ứng)
=> A là trung điểm của FE
c.
AM = AN (chứng minh trên)
=> Tam giác ANM cân tại A
=> \(ANM=\frac{180^0-NAM}{2}\) (1)
Tam giác ABC cân tại A
=> \(ABC=\frac{180^0-BAC}{2}\) (2)
Từ (1) và (2)
=> ANM = ABC
mà 2 góc này ở vị trí đồng vị
=> MN // BC
Xét tam giác ANF và BNC có:
AN = NB (N là trung điểm của AB)
ANF = BNC (2 góc đối đỉnh)
NF = NC (N là trung điểm của FC)
=> Tam giác ANF = Tam giác BNC (c.g.c)
=> FAN = CBN (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AF // BC
mà MN // BC (chứng minh trên)
=> EF // MN // BC
Chúc bạn học tốt ^^
Bạn vé hình giống của ((Me)) nhé ..
a, AB=AC (gt)
\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow\hept{\begin{cases}AN=AM\\CM=BN\end{cases}}\)
Xét 2 \(\Delta ABM\)và \(\Delta CAN\)có:
góc A chung
AB=AC(gt)
\(AN=AM\)( cmt)
\(\Rightarrow\Delta AMB=\Delta ACN\left(c.g.c\right)\)
Xét 2 \(\Delta BMC\)Và \(\Delta CNB\)Có:
Cạnh BC chung
Góc \(ABC\)= góc \(ACB\)
\(BN=CM\)(Cmt)
\(\Rightarrow\Delta NBC=\Delta MCB\left(c.g.c\right)\)
Từ A Kẻ \(AK\perp BC\)
\(\Rightarrow\)AK là đường phân giác của \(\Delta ABC\)(Vì \(\Delta ABC\)Là tam giác cân )
\(\Rightarrow NAK=KAC\)
gọI O là gia điểm của hai đường chéo CF và BE
Xét 2 \(\Delta ANO\)Và \(\Delta AMO\)Có :
Góc \(NAO\)= Góc \(MAO\)(Cmt)
Cạnh \(AO\)Chung
\(AN=AM\)(Theo câu a)
\(\Rightarrow\Delta ANO=\Delta AMO\left(C.g.c\right)\)
\(\Rightarrow ANO=AMO\)(Cặp góc tương ứng )
Ta có : góc \(FNA+ANO=180^O\)(Cặp góc kề bù )
góc \(EMA+AMO=180^O\)(Cặp góc kề bù )
Mà góc \(ANO=AMO\)(Cmt)
\(\Rightarrow EMA=FNA\)
vÌ \(\Delta ABC\)Cân và N ,M lần lượt là trung điểm của AB,AC
\(\Rightarrow CN=BM\)
\(\Rightarrow NF=ME\)
xÉT 2 \(\Delta AFN\)VÀ \(\Delta AEM\)có :
góc \(ANF=EMA\)(Cmt)
\(AM=AN\)(Cmt)
\(FN=ME\)(Cmt)
\(\Rightarrow\DeltaÀFN=\Delta AEM\left(C.g.c\right)\)
\(\Rightarrow AF=AE\)(CẶP CẠNH TƯƠNG ỨNG )
\(\Rightarrow A\)Là trung điểm của EF
Lấy I là gia điểm của NM và AK
Vì \(\Delta ABC\)là tam giác cân
\(\Rightarrow AK\)\(\perp MN\)
Ta có : \(\hept{\begin{cases}MN\perp AK\\BC\perp AK\end{cases}}\Rightarrow MN\)// \(BC\)(Tính chất từ vuông góc đến song song)
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
c: Ta có: ΔAMB=ΔDMC
=>AB=DC
Ta có: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
d: ta có: ΔAMC=ΔDMB
=>AC=DB
Ta có: ΔAMC=ΔDMB
=>\(\widehat{MAC}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BD
e: Xét ΔKDM và ΔHAM có
KD=HA
\(\widehat{KDM}=\widehat{HAM}\)
DM=AM
Do đó: ΔKDM=ΔHAM
=>\(\widehat{KMD}=\widehat{HMA}\)
mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)
nên \(\widehat{HMA}+\widehat{KMA}=180^0\)
=>H,M,K thẳng hàng
a) T/có : AB = AC (gt)
=> Tam giác ABC cân tại A (đn)
AN = NB = AB/2 (N là trung điểm của AB)
AM = MC = AC/2 (M là trung điểm của AC)
mà AB = AC (tam giác ABC cân tại A)
=> AM = MC = AN = NB
Xét tam giác ABM và tam giác ACN có:
AM = AN (cmt)
A là góc chung
AB = AC (tam giác ABC cân tại A)
=> Tam giác ABM = Tam giác ACN (c.g.c)
Xét tam giác BNC và tam giác CMB có:
BN = CN (cmt)
NBC = MCB (tam giác ABC cân tại A)
BC là cạnh chung
=> Tam giác BNC = Tam giác CMB (c.g.c)
b) MB = ME (M là trung điểm của BE)
NC = NF (N là trung điểm của CF)
mà MB = NC (tam giác BNC = tam giác CMB)
=> ME = NF
T/có : ANF = BNC (2 góc đối đỉnh)
AME = CMB (2 góc đối đỉnh)
mà BNC = CMB (tam giác BNC = CMB)
=> ANF = AME
Xét tam giác ANF và tam giác AME có:
AN = AM (cmt)
ANF = AME (cmt)
NF = ME (cmt)
=> Tam giác ANF = tam giác AME (c.g.c)
=> AF = AE (2 cạnh tương ứng)
=> A là trung điểm của FE
c) Vì AM = AN (cmt)
=> Tam giác ANM cân tại A
=> ANM = (180 − NAM) : 2 (1)
Tam giác ABC cân tại A
=> ABC = (180 − BAC) : 2 (2)
Từ (1) và (2) => ANM = ABC
mà 2 góc này ở vị trí đồng vị
=> MN // BC
Xét tam giác ANF và BNC có:
AN = NB (N là trung điểm của AB)
ANF = BNC (2 góc đối đỉnh)
NF = NC (N là trung điểm của FC)
=> Tam giác ANF = Tam giác BNC (c.g.c)
=> FAN = CBN (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AF // BC
mà MN // BC (cmt)
=> EF // MN // BC (đpcm)
Tam giác ABM nào hả :)) ?