K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2022

ko có đề ahihi

4 tháng 1 2022

không có đề à

3 tháng 10 2021

\(c,\Rightarrow\left|x-\dfrac{1}{9}\right|=-\dfrac{4}{5}\\ \Rightarrow x\in\varnothing\left(\left|x-\dfrac{1}{9}\right|\ge0>-\dfrac{4}{5}\right)\\ d,\Rightarrow\left\{{}\begin{matrix}3x-2=0\\4y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{7}{4}\end{matrix}\right.\\ e,\Rightarrow\left\{{}\begin{matrix}2x+1=0\\x-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=y=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow x=y=-\dfrac{1}{2}\)

\(\left(x-1\right)^2=5^2\\\Rightarrow x-1=5\\ \Rightarrow x=5+1=6\)

20:

1: Xét ΔACD và ΔABE có

AC=AB

góc A chung

AD=AE

=>ΔACD=ΔABE

2: ΔABE=ΔACD

=>góc ABE=góc ACD

=>góc IBD=góc ICE

3: Xét ΔIBD và ΔICE có

góc IBD=góc ICE
BD=CE
góc IDB=góc IEC
=>ΔIBD=ΔICE

4: ΔIBD=ΔICE

=>IB=IC; ID=IE

=>ΔIBC cân tại I; ΔIDE cân tại I

12 tháng 3 2023

milk c.ơn bn 😀

22 tháng 9 2016

bằng số âm nên kết quả chia hết cho 78

22 tháng 9 2016

bn có thể làm chi tiết ra được ko

2 tháng 11 2023

không có câu hỏi sao trả lời

6 tháng 7 2023

\(E=1^2+2^2+3^2+....+59^2\)

\(E=1+2\left(1+1\right)+3\left(2+1\right)+...+59\left(58+1\right)\)

\(E=1+1\times2+2+2\times3+3+....+58\times59+59\)

\(E=\left(1+2+3+...+59\right)+\left(1\times2+2\times3+....+58\times59\right)\)

Ta đặt :

\(A=1+2+3+...+59\)

Số số hạng là \(\left(59-1\right)\div1+1=59\) số hạng

Tổng là \(\left(59+1\right)\times59\div2=1770\) 

=> \(A=1770\) 

Ta đặt

   \(B=1\times2+2\times3+...+58\times59\)

\(3B=1\times2\times3+2\times3\times3+....+58\times59\times3\)

\(3B=1\times2\times3+2\times3\times\left(4-1\right)+...+58\times59\times\left(57-54\right)\)

\(3B=1\times2\times3+2\times3\times4-2\times3\times1+...+58\times59\times57-58\times59\times54\)

\(3B=58\times59\times57\)

\(B=58\times59\times19\)

\(B=65018\)

=> \(E=A+B\) 

=> \(E=1770+65018\) 

=> \(E=66788\)

 

6 tháng 7 2023

Trước hết ta sẽ chứng minh \(1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*). Thật vậy, với \(n=1\) thì hiển nhiên \(1^2=\dfrac{1\left(1+1\right)\left(2.1+1\right)}{6}\). Giả sử (*) đúng đến \(n=k\), khi đó \(1^2+2^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\). Ta cần chứng minh (*) đúng với \(n=k+1\). Ta có:

\(1^2+2^2+...+k^2+\left(k+1\right)^2\)

\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\) 

\(=\dfrac{\left(k+1\right)\left(2k^2+k+6\left(k+1\right)\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left(2k^2+7k+6\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left[\left(k+1\right)+1\right]\left[2\left(k+1\right)+1\right]}{6}\).

Vậy (*) đúng với \(n=k+1\). Ta có đpcm. Thay \(n=59\) thì ta có:

\(E=1^2+2^2+...+59^2=\dfrac{59\left(59+1\right)\left(2.59+1\right)}{6}=70210\)

2 tháng 1

\(< =>-2\sqrt{x}=-4\\ < =>\sqrt{x}=2\\ < =>x=4\)

2 tháng 1

x=4 nha mình đánh nhầm khúc cuối