Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\dfrac{x^3+2x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}=\dfrac{x^3+2x+2x-2-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3+3}{\left(x^2+x+1\right)}\)
a: \(=\dfrac{x^3+2x+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^3-x^2+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+3}{x^2+x+1}\)
b: \(=\dfrac{x^2-2x-3+x^2+2x-3+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x+3}\)
c: \(=\dfrac{6-7+x}{3\left(x-1\right)}=\dfrac{x-1}{3\left(x-1\right)}=\dfrac{1}{3}\)
d: \(=\dfrac{x^3+2x+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3-x^2+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+3}{x^2+x+1}\)
11)\(\dfrac{3x+1}{x-5}+\dfrac{2x}{x-5}=\dfrac{3x+2x+1}{x-5}=\dfrac{5x+1}{x-5}\)
12)\(\dfrac{4-x^2}{x-3}+\dfrac{2}{x^2-9}=\dfrac{4-x^2}{x-3}+\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(4-x^2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{2+\left(2-x\right)\left(2+x\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
13)
\(\dfrac{3}{4x-2}+\dfrac{2x}{4x^2-1}=\dfrac{3}{2\left(2x-1\right)}+\dfrac{2x}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{3\left(2x+1\right)}{2\left(2x-1\right)\left(2x+1\right)}+\dfrac{2.2x}{2\left(2x-1\right)\left(2x+1\right)}=\dfrac{6x+3+4x}{2\left(2x-1\right)\left(2x+1\right)}=\dfrac{10x+3}{2\left(2x-1\right)\left(2x+1\right)}\)
14)
\(\dfrac{2x+1}{2x-4}+\dfrac{5}{x^2-4}=\dfrac{2x+1}{2\left(x-2\right)}+\dfrac{5}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(2x+1\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\dfrac{5.2}{2\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+5x+12}{2\left(x-2\right)\left(x+2\right)}\)
\(\dfrac{2x-3}{5}-x+2\ge\dfrac{x}{3}\)
\(\Leftrightarrow3\left(2x-3\right)-15\left(x+2\right)\ge5x\)
\(\Leftrightarrow6x-9-15x+30\ge5x\)
\(\Leftrightarrow6x-15x-5x\ge9+30\)
\(\Leftrightarrow-14x\ge-21\)
\(\Leftrightarrow x\le\dfrac{21}{14}\le\dfrac{3}{2}\)
-------------|--------]////////////////--->
0 3/2
lâu rồi cũng không nhớ cách làm :v
\(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x-y\right)}{\left(x-y\right)^2x\left(x+y\right)}=\dfrac{\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)}{x\left(x-y\right)^2\left(x+y\right)}=\dfrac{x^2+y^2}{x}\)
(x+3)^2 -x^2+9=0
(x+3)^2-(x^2-9)=0
(x+3)^2-(x-3)(x+3)=0
(x+3)(x+3-x+3)=0
6(x+3)=0
suy ra x+3=0
x=-3 k
Answer:
\(\left(x+3\right)^2-x^2+9=0\)
\(\Rightarrow\left(x+3\right)\left(x+3\right)-x^2+9=0\)
\(\Rightarrow x^2+3x+3x+9-x^2+9=0\)
\(\Rightarrow6x+18=0\)
\(\Rightarrow6x=-18\)
\(\Rightarrow x=-3\)