K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

3n+1 chia hết 11-n

<=> 3n+1+(11-n).3 chia hết 11-n (11-n chia hết cho 11-n)

<=>12 chia hết 11-n

=> 11-n thuộc tập hợp Ư(12) = {1; 2; 3; 4; 6 ; 12}

Mà 11-n <12 =)) 11-n thuộc tập hợp {1; 2; 3; 4; 6}

Vậy n thuộc tập hợp {5; 7; 8; 9; 10}

Mình đánh máy nên ko dùng kí hiệu đc, mong bạn thông cảm giúp mình

6 tháng 11 2019

cảm ơn nha

Ta có: 3n+5⋮n+1.

(3n+3)+2⋮n+1.

3(n+1)+2⋮n+1.

mà 3(n+1)⋮n+1

⇒2⋮n+1⇒n+1∈U(2)={±1;±2}.

Ta lập bảng xét giá trị 

n+1-11-22
n-20-31
6 tháng 11 2019

Vì 3n-5:hết cho n+1mà n+1 : hết cho n+1 =≫3.(n+1)                                                                                                                                                                         

TC : 3n-5 -[3.(n+1)]:hết cho n+1

3n-5 -(3n+3) :hết cho n+1

3n- 5 -  3n-3:hết cho n+1

2:hết cho n+1  =≫n+1 thuôc Ư(2)={1;2}

thay n+1lần lượt= 1;2 là ban sẽ ra

AH
Akai Haruma
Giáo viên
17 tháng 12 2023

Lời giải:

$n^3+3n+1\vdots n+1$

$\Rightarrow (n^3+1)+3n\vdots n+1$

$\Rightarrow (n+1)(n^2-n+1)+3(n+1)-3\vdots n+1$

$\Rightarrow (n+1)(n^2-n+4)-3\vdots n+1$

$\Rightarrow 3\vdots n+1$

$\Rightarrow n+1\in \left\{1; 3\right\}$ (do $n+1$ là stn) 

$\Rightarrow n\in \left\{0; 2\right\}$

6 tháng 3 2020

\(3n+1⋮11-n\)

\(=>3n+1⋮-\left(n-11\right)\)

\(=>3n-33+34⋮n-11\)

\(=>34⋮n-11\)

\(=>n-11\inƯ\left(34\right)\)

Nên ta có bảng sau :

Tự lập bảng nhé bạn :P

16 tháng 12 2018

\(3n+5⋮n+1\)

\(\Leftrightarrow3\left(n+1\right)+2⋮n+1\)

\(\Leftrightarrow2⋮n+1\)

Vì n là stn => n + 1 > 1

Ta có bảng :

n + 1                  1                    2                   
n01

Vậy \(n\in\left\{0;1\right\}\)

21 tháng 11 2021

mình xin lỗi mình đánh máy sai câu hỏi như này

 A) n+7 chia hết cho n+2 ( với n khác 2 )

 B) 3n+1 chia hết cho 2n+3  

câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html

câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html

28 tháng 10 2020

a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:

\(n-2\)\(1\)\(2\)\(3\)\(6\)
\(n\)\(3\)\(4\)\(5\)\(8\)

Vậy \(n\in\left\{3;4;5;8\right\}\)

28 tháng 10 2020

b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
                                            hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:

\(n-1\)\(1\)\(2\)\(4\)
\(n\)\(2\)\(3\)\(5\)


Vậy \(n\in\left\{2;3;5\right\}\)

24 tháng 11 2016

Ta có 2n + 5 = 2n -1 + 6

2n+5 chia hết cho 2n-1 <=> 2n-1+6 chia hết 2n-1

Mà 2n-1 chia hết 2n-1

=> Để 2n-1+6 chia hết 2n-1 thì 6 chia hết 2n-1

=> 2n-1 thuôc Ư(6) = {1,2,3,6}

TH1: 2n-1 =1 => n=1

TH2: 2n-1 = 2 => n= 3:2 không là số tự nhiên (loại)

TH3: 2n-1 = 3 => n=2

TH4: 2n-1 = 6 => n= 7:2 không là số tự nhiên (loại)

Vậy n có 2 giá trị là 1 và 2

16 tháng 7 2017

Ta có 2n + 5 = 2n -1 + 6

2n+5 chia hết cho 2n-1 <=> 2n-1+6 chia hết 2n-1

Mà 2n-1 chia hết 2n-1

=> Để 2n-1+6 chia hết 2n-1 thì 6 chia hết 2n-1

=> 2n-1 thuôc Ư(6) = {1,2,3,6}

TH1: 2n-1 =1 => n=1

TH2: 2n-1 = 2 => n= 3:2 không là số tự nhiên (loại)

TH3: 2n-1 = 3 => n=2

TH4: 2n-1 = 6 => n= 7:2 không là số tự nhiên (loại)

Vậy n có 2 giá trị là 1 và 2