Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là trọng tâm tam giác \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\)
\(\overrightarrow{MA}^2+\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MA}.\overrightarrow{MC}=0\)
\(\Leftrightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=0\)
\(\Leftrightarrow\overrightarrow{MA}\left(\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right)=0\)
\(\Leftrightarrow3\overrightarrow{MA}.\overrightarrow{MG}=0\)
\(\Rightarrow\) M thuộc đường tròn đường kính AG
Bán kính: \(R=\dfrac{1}{2}AG=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{3}}{6}\)
\(\overrightarrow{BM}=\dfrac{1}{3}\overrightarrow{MC}=\dfrac{1}{3}\left(\overrightarrow{MB}+\overrightarrow{BC}\right)\Rightarrow\overrightarrow{BM}=\dfrac{1}{4}\overrightarrow{BC}\)
\(k\overrightarrow{AN}=\overrightarrow{CN}=\overrightarrow{CA}+\overrightarrow{AN}\Rightarrow\left(1-k\right)\overrightarrow{AN}=\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\)
\(\Rightarrow\overrightarrow{AN}=\dfrac{1}{1-k}\overrightarrow{AB}+\dfrac{1}{1-k}\overrightarrow{AD}\)
\(\overrightarrow{AM}.\overrightarrow{DN}=0\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{BM}\right)\left(\overrightarrow{DA}+\overrightarrow{AN}\right)=0\)
\(\Leftrightarrow\left(\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AD}\right)\left(\dfrac{1}{1-k}\overrightarrow{AB}+\dfrac{k}{1-k}\overrightarrow{AD}\right)=0\)
\(\Rightarrow\dfrac{1}{1-k}AB^2+\dfrac{k}{4\left(1-k\right)}AD^2=0\)
\(\Leftrightarrow\dfrac{1}{1-k}+\dfrac{k}{4\left(1-k\right)}=0\Leftrightarrow k=-4\)
Đáp án B
Gọi G là trọng tâm tam giác\(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
Đặt \(P=MA^2+MB^2+MC^2=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
\(=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(=3MG^2+GA^2+GB^2+GC^2\)
Do \(GA^2+GB^2+GC^2\) ko đổi nên \(P_{min}\) khi \(MG_{min}\Leftrightarrow M\) là chân đường vuông góc hạ từ G xuống BC
\(\Rightarrow\dfrac{CM}{BC}=\dfrac{2}{3}\Rightarrow\dfrac{BM}{BC}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{1}{3}\)
Câu 4:
Áp dụng định lý Pytago
\(BC^2=AB^2+AC^2\Rightarrow BC=2\)
Ta có:
\(\overrightarrow{CA}.\overrightarrow{BC}=-\overrightarrow{CA}.\overrightarrow{CB}=-\dfrac{CA^2+CB^2-AB^2}{2}=-\dfrac{2+4-2}{2}=-2\)
Câu 5:
Gọi M là trung điểm BC
\(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
Mà: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
Câu 6:
\(\left|\overrightarrow{a}-\overrightarrow{b}\right|=3\)
\(a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=9\)
\(\overrightarrow{a}.\overrightarrow{b}=\dfrac{1^2+2^2-9}{2}=-2\)
Câu 7:
\(\left|\overrightarrow{AB}-\overrightarrow{AD}+\overrightarrow{CD}\right|=\left|\overrightarrow{DB}+\overrightarrow{CD}\right|\)
\(=\left|\overrightarrow{DB}-\overrightarrow{DC}\right|=\left|\overrightarrow{CB}\right|=BC=a\)
Lời giải:
a)
$2\overrightarrow{AD}=\overrightarrow{AD}+\overrightarrow{AD}$
$=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{CD}$
$=\overrightarrow{AB}+\overrightarrow{AC}+(\overrightarrow{BD}+\overrightarrow{CD})$
$=\overrightarrow{AB}+\overrightarrow{AC}$
$\Rightarrow \overrightarrow{AD}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}$
Tương tự:
$\overrightarrow{BE}=\frac{\overrightarrow{BC}+\overrightarrow{BA}}{2}$
$\overrightarrow{CF}=\frac{\overrightarrow{CA}+\overrightarrow{CB}}{2}$
Cộng lại:
$\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\frac{\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{CB}}{2}=\frac{\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}}{2}=\overrightarrow{0$}$
Ta có đpcm.
b)
$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MD}+\overrightarrow{DA}+\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{MF}+\overrightarrow{FC}$
$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})+(\overrightarrow{DA}+\overrightarrow{EB}+\overrightarrow{FC})$
$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})-(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF})$
$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}-\overrightarrow{0}$ (theo phần a)
$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}$
Ta có đpcm.