Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AM}.\overrightarrow{AB}=AM^2=\overrightarrow{AM}^2\)
\(\Leftrightarrow\overrightarrow{AM}\left(\overrightarrow{AB}-\overrightarrow{AM}\right)=0\)
\(\Rightarrow\overrightarrow{AM}.\overrightarrow{MB}=0\)
\(\Rightarrow AM\perp BM\)
\(\Rightarrow\) Quỹ tích là đường tròn đường kính AB
Ta có:
\(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{MB}+4\overrightarrow{MC}\)
\(=6\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{IB}+4\overrightarrow{IC}\)
\(=6\overrightarrow{MI}+4\overrightarrow{IG}+4\overrightarrow{IC}\)
\(=6\overrightarrow{MI}\)
\(\Rightarrow M,I,N\) thẳng hàng
Lời giải:
a. $I$ là trung điểm $AH$, $J$ là trung điểm $HC$ nên $IJ$ là đường trung bình ứng với cạnh $AC$ của tam giác $HAC$
$\Rightarrow IJ\parallel AC$ hay $IJ\perp AB$
Tam giác $BAJ$ có $AI\perp BJ, JI\perp AB$ nên $I$ là trực tâm tam giác
$\Rightarrow BI\perp AJ$
b. Gọi $T,K$ lần lượt là trung điểm $AB, AC$
\((\overrightarrow{MA}+\overrightarrow{MB})(\overrightarrow{MA}+\overrightarrow{MC})=(\overrightarrow{MT}+\overrightarrow{TA}+\overrightarrow{MT}+\overrightarrow{TB})(\overrightarrow{MK}+\overrightarrow{KA}+\overrightarrow{MK}+\overrightarrow{KC})\)
\(=2\overrightarrow{MT}.2\overrightarrow{MK}=0\Leftrightarrow \overrightarrow{MK}\perp \overrightarrow{MT}\)
Vậy $M$ nằm trên đường tròn đường kính $KT$
\(\overrightarrow{ME}+3\overrightarrow{MC}=\overrightarrow{0}\Rightarrow\overrightarrow{MC}=-\dfrac{1}{3}\overrightarrow{ME}\)
\(EB=2EA\Rightarrow\overrightarrow{BE}=2\overrightarrow{EA}\)
Ta có: \(\overrightarrow{ME}=\overrightarrow{MB}+\overrightarrow{BE}=\overrightarrow{MB}+2\overrightarrow{EA}=\overrightarrow{MB}+2\left(\overrightarrow{EM}+\overrightarrow{MA}\right)=\overrightarrow{MB}-2\overrightarrow{ME}+2\overrightarrow{MA}\)
\(\Rightarrow3\overrightarrow{ME}=\overrightarrow{MB}+2\overrightarrow{MA}\Rightarrow\overrightarrow{ME}=\dfrac{1}{3}\overrightarrow{MB}+\dfrac{2}{3}\overrightarrow{MA}\)
\(\Rightarrow\overrightarrow{MC}=-\dfrac{1}{3}\overrightarrow{ME}=-\dfrac{1}{9}\overrightarrow{MB}-\dfrac{2}{9}\overrightarrow{MA}\)
\(\Rightarrow\dfrac{2}{9}\overrightarrow{MA}=-\dfrac{1}{9}\overrightarrow{MB}-\overrightarrow{MC}\Rightarrow\overrightarrow{MA}=-\dfrac{1}{2}\overrightarrow{MB}-\dfrac{9}{2}\overrightarrow{MC}\)
Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;3-y\right)\\\overrightarrow{MB}=\left(4-x;-y\right)\\\overrightarrow{MC}=\left(2-x;-5-y\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\left(x-1;y+18\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+18=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-18\end{matrix}\right.\)
\(\Rightarrow M\left(1;-18\right)\)
Gọi G là trọng tâm tam giác \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\)
\(\overrightarrow{MA}^2+\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MA}.\overrightarrow{MC}=0\)
\(\Leftrightarrow\overrightarrow{MA}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=0\)
\(\Leftrightarrow\overrightarrow{MA}\left(\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right)=0\)
\(\Leftrightarrow3\overrightarrow{MA}.\overrightarrow{MG}=0\)
\(\Rightarrow\) M thuộc đường tròn đường kính AG
Bán kính: \(R=\dfrac{1}{2}AG=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{3}}{6}\)