K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2022

a,sửa đề : đk x khác -2;  2 

 \(x^2+x-2+5x-10=12+x^2-4\)

\(\Leftrightarrow6x-20=0\Leftrightarrow x=\dfrac{10}{3}\left(tm\right)\)

b, \(3x-12+5+5x=105\Leftrightarrow8x=112\Leftrightarrow x=14\)

c, \(3x^2+14x-49=-\left(x^2+2x-15\right)\)

\(\Leftrightarrow4x^2+16x-34=0\Leftrightarrow x=\dfrac{-4\pm5\sqrt{2}}{2}\)

13 tháng 3 2022

a. ko hỉu đề lắm :v

b.\(\dfrac{x-4}{5}+\dfrac{1+x}{3}=7\)

\(\Leftrightarrow\dfrac{3\left(x-4\right)+5\left(1+x\right)}{15}=\dfrac{105}{15}\)

\(\Leftrightarrow3\left(x-4\right)+5\left(1+x\right)=105\)

\(\Leftrightarrow3x-12+5+5x-105=0\)

\(\Leftrightarrow8x-112=0\)

\(\Leftrightarrow8x=112\)

\(\Leftrightarrow x=14\)

c.\(\left(3x-7\right)\left(x+7\right)=\left(5+x\right)\left(3-x\right)\)

\(\Leftrightarrow3x^2+21x-7x-49=15-5x+3x-x^2\)

\(\Leftrightarrow4x^2+16x-64=0\)

Nghiệm xấu lắm bạn

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:

a.

 \(\frac{10}{x+2}=\frac{60}{6(x+2)}=\frac{60(x-2)}{6(x+2)(x-2)}=\frac{60(x-2)}{6(x^2-4)}\)

\(\frac{5}{2x-4}=\frac{15(x+2)}{6(x-2)(x+2)}=\frac{15(x+2)}{6(x^2-4)}\)

\(\frac{1}{6-3x}=\frac{x+2}{3(2-x)}=\frac{2(x+2)^2}{6(2-x)(2+x)}=\frac{-2(x+2)^2}{6(x^2-4)}\)

b.

\(\frac{1}{x+2}=\frac{x(2-x)}{x(x+2)(2-x)}=\frac{x(2-x)}{x(4-x^2)}\)

\(\frac{8}{2x-x^2}=\frac{8(x+2)}{(x+2)x(2-x)}=\frac{8(x+2)}{x(4-x^2)}\)

c.

\(\frac{4x^2-3x+5}{x^3-1}\)

\(\frac{1-2x}{x^2+x+1}=\frac{(1-2x)(x-1)}{(x-1)(x^2+x+1)}=\frac{-2x^2+3x-1}{x^3-1}\)

\(-2=\frac{-2(x^3-1)}{x^3-1}\)

 

14 tháng 12 2021

\(=\dfrac{2x^2-x-x-1+2-x^2}{x-1}=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2023

Dấu ngoặc và cuối là sai nhé bạn. Phải là ngoặc vuông (x=0 hoặc x=-8) mới đúng, vì x không thể nhận 2 giá trị khác nhau cùng lúc.

=>8(x+1/x)^2+4[(x+1/x)^2-2]^2-4[(x+1/x)^2-2](x+1/x)^2=(x+4)^2

Đặt x+1/x=a(a>=2)

=>8a^2+4[a^2-2]^2-4[a^2-2]*a^2=(x+4)^2

=>8a^2+4a^4-16a^2+16-4a^4+8a^2=(x+4)^2

=>(x+4)^2=16

=>x+4=4 hoặc x+4=-4

=>x=-8;x=0

NV
16 tháng 4 2022

ĐKXĐ: \(x\ne\pm2\)

\(\dfrac{x+1}{x-2}=\dfrac{2}{x^2-4}\)

\(\Rightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}=\dfrac{2}{x^2-4}\)

\(\Rightarrow\left(x+1\right)\left(x+2\right)=2\)

\(\Leftrightarrow x^2+3x+2=2\)

\(\Leftrightarrow x^2+3x=0\)

\(\Leftrightarrow x\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\) (thỏa mãn)

16 tháng 4 2022

đkxđ: \(x ≠2; x ≠-2\)

\(\dfrac{x+1}{x-2}=\dfrac{2}{x^2-4}\)

\(⇔\dfrac{(x+1)(x+2)}{x^2-4}=\dfrac{2}{x^2-4}\)

\(⇔(x+1)(x+2)=2\)

\(⇔x^2+3x=0\)

\(⇔x(x+3)=0\)

\(⇔\left[\begin{array}{} x=0\\ x+3=0 \end{array} \right.\)

\(⇔\left[\begin{array}{} x=0\\ x=-3 \end{array} \right.\)

a: =>4x^2-4x+1+7>4x^2+3x+1

=>-4x+8>3x+1

=>-7x>-7

=>x<1

b: \(\Leftrightarrow12x+1>=36x+12-24x-3\)

=>1>=9(loại)

11 tháng 8 2018

\(1a.A=\dfrac{x}{x+1}-\dfrac{3-3x}{x^2-x+1}+\dfrac{x+4}{x^3+1}=\dfrac{x\left(x^2-x+1\right)-3\left(1-x^2\right)+x+4}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^3+2x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^3+x^2+x^2+x+x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+x+1}{x^2-x+1}\left(x\ne-1\right)\)

\(b.A=\dfrac{x^2+x+1}{x^2-x+1}=\dfrac{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+1-\dfrac{1}{4}}{x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+1-\dfrac{1}{4}}=\dfrac{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\left(x\ne-1\right)\)

\(2a.M=\left(\dfrac{x}{x^2-4}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)=\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right]:\dfrac{x^2-4+10-x^2}{x+2}=\dfrac{6}{\left(2-x\right)\left(x+2\right)}.\dfrac{x+2}{6}=\dfrac{1}{2-x}\left(x\ne\pm2\right)\)

\(b.Để:M\in Z\Leftrightarrow\dfrac{1}{2-x}\in Z\Leftrightarrow2-x\in\left\{\pm1\right\}\)

\(\oplus2-x=1\Leftrightarrow x=1\left(TM\right)\)

\(\oplus2-x=-1\Leftrightarrow x=3\left(TM\right)\)

\(c.\circledast x=\dfrac{1}{2}\left(TM\right)\) , ta có :

\(M=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3}\)

\(\circledast x=2\left(KTM\right)\) , giá trị của M không xác định tại x = 2

11 tháng 9 2017

Bài 1:

a, Ta có:

\(\left(a+b+c\right)^2-\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2+ab+bc+ca=0\)\(\Leftrightarrow2a^2+2b^2+2c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=0\Leftrightarrow a+b=b+c=c+a=0\)

\(\Leftrightarrow a=b=c=0\)

Vậy điều kiện để phân thức M được xác định là a, b, c không đồng thời = 0

b, Ta có:

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

Đặt: \(a^2+b^2+c^2=x,ab+bc+ca=y\)

=> \(\left(a+b+c\right)^2=x+2y\)

Ta cũng có:

\(M=\dfrac{x\left(x+2y\right)+y^2}{x+2y-y}=\dfrac{x^2+2xy+y^2}{x+y}=\dfrac{\left(x+y\right)^2}{x+y}=x+y\)

\(=a^2+b^2+c^2+ab+bc+ca\)

NV
13 tháng 12 2021

\(=\dfrac{x+1}{x^3+1}+\dfrac{x^3+1}{x^3+1}-\dfrac{x^2+2}{x^3+1}\)

\(=\dfrac{x+1+x^3+1-x^2-2}{x^3+1}\)

\(=\dfrac{x^3-x^2+x}{x^3+1}=\dfrac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x}{x+1}\)