K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo đề, ta có (d) đi qua A(5;27) và B(0;30)

Do đó, ta có hệ phương trình:

5a+b=27 và 0a+b=30

=>b=30 và 5a=-3

=>a=-3/5 và b=30

9 tháng 8 2021

a: Thay m=2 vào (d), ta được:

\(y=2\cdot\left(2-1\right)x-2^2+2\cdot2\)

\(=2x-4+4=2x\)

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2=2x\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(x-2\right)=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(0;0\right);\left(2;4\right)\right\}\)

b: Phương trình hoành độ giao điểm là:

\(x^2-2\left(m-1\right)x+m^2-2m=0\)

\(\Delta=\left(2m-2\right)^2-4\left(m^2-2m\right)\)

\(=4m^2-8m+4-4m^2+8m=4\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(2\left(m-1\right)=0\)

hay m=1

14 tháng 4 2022

Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{12}{3}=4\\x_1.x_2=-\dfrac{5}{3}\end{matrix}\right.\)

\(T=\dfrac{x_1^2+4x_2-x_1x_2}{4x_1+x^2_2+x_1x_2}=\dfrac{x_1^2+\left(x_1+x_2\right)x_2-x_1x_2}{\left(x_1+x_2\right)x_1+x_2^2+x_1x_2}\)

                                     \(=\dfrac{x_1^2+x_1x_1+x_2^2-x_1x_2}{x_1^2+x_1x_2+x_2^2+x_1x_2}\)

                                      \(=\dfrac{x_1^2+x_2^2}{x_1^2+2x_1x_2+x_2^2}\)

                                       \(=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1+x_2\right)^2}\)

                                        \(=\dfrac{4^2-2.-\dfrac{5}{3}}{4^2}=\dfrac{16+\dfrac{10}{3}}{16}=\dfrac{29}{24}\)

14 tháng 4 2022

Mik chưa hiểu phần dấu = thức 2 tính T lắm 

NV
12 tháng 12 2021

\(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\Rightarrow C=\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}\ge2\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}}}=2\sqrt{3}\)

Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{3}{\sqrt{x}}\Rightarrow x=3\)