K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

Có \(ac=1.\left(-2\right)=-2\)<0

=>Pt luôn có hai nghiệm pb trái dấu

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2\end{matrix}\right.\)

Do x1;x2 là hai nghiệm của pt \(\Rightarrow\left\{{}\begin{matrix}x_1^2-3=\left(m-1\right)x_1-1\\x_2^2-3=\left(m-1\right)x_2-1\end{matrix}\right.\)

Có \(\dfrac{x_1}{x_2}=\dfrac{x_2^2-3}{x_1^2-3}\)(đk: \(x^2\ne3\) thay vào pt ban đầu => \(m\ne\dfrac{3+\sqrt{3}}{3}\))

\(\Rightarrow x_1\left(x_1^2-3\right)=x_2\left(x_2^2-3\right)\)

\(\Leftrightarrow x_1\left[\left(m-1\right)x_1-1\right]=x_2\left[\left(m-1\right)x_2-1\right]\)

\(\Leftrightarrow x_1^2\left(m-1\right)-x_1=x_2^2\left(m-1\right)-x_2\)

\(\Leftrightarrow\left(m-1\right)\left(x_1^2-x_2^2\right)-\left(x_1-x_2\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(x_1+x_2\right)-1=0\) (vì \(x_1\ne x_2\))

\(\Leftrightarrow\left(m-1\right)^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\) (thỏa mãn)

Vậy...