Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL :
a, ( -12/16 + 7/14 ) - ( 1/13 - 3/13 )
= ( -3/4 + 1/2 ) - (-2/13)
= (-3/4 + 2/4 ) - ( -2/13 )
= -1/4 - ( -2/13 )
= (-13/52 ) - (-8/52)
= -5/52
b, 10/11 + 4/11 : 4 - 1/8 = 10/11 + 1/11 - 1/8
= 11/11 - 1/8
= 1 -1/8
= 8/8 - 1/8
= 7/8
HT
\(\Leftrightarrow3\cdot9^2-7\left(9x-5\right)=26\)
=>7(9x-5)=217
=>9x-5=31
hay x=4
a) \(\left(\left(\frac{-12}{16}\right)+\frac{7}{14}\right)-\left(\frac{1}{13}-\frac{3}{13}\right)\) \(=\left(\left(\frac{-3}{4}\right)+\frac{1}{2}\right)-\left(\frac{-2}{13}\right)\) \(=\left(\frac{-2}{8}\right)-\left(\frac{-2}{13}\right)\) \(=\left(\frac{-10}{104}\right)\) \(=\left(\frac{-5}{72}\right)\) | b) \(\frac{10}{11}+\frac{4}{11}:4-\frac{1}{8}\) \(=\frac{10}{11}+\frac{4}{11}:\frac{4}{1}-\frac{1}{8}\) \(=\frac{10}{11}+\frac{4}{11}\cdot\frac{1}{4}-\frac{1}{8}\) \(=\frac{10}{11}+\frac{1}{11}-\frac{1}{8}\) \(=\frac{11}{11}-\frac{1}{8}\) \(=1-\frac{1}{8}\) \(=\frac{7}{8}\) |
HT
1 cặp có giá trị là:
\(\frac{1}{11}\)+\(\frac{1}{25}\)=\(\frac{36}{275}\)
Có các phân số là;
(25-11):1+1=15(phân số)
Có các cặp là :
15 :2=7(CẶP ,DƯ 1 CẶP)
1 CẶP DƯ ĐÓ LÀ:
\(\frac{36}{275}\):2=\(\frac{36}{550}\)=\(\frac{18}{275}\)
Các cặp có tổng là:
\(\frac{36}{275}\).7=\(\frac{252}{275}\)
Tổng số đó là:
\(\frac{252}{275}\)+\(\frac{18}{275}\)=\(\frac{270}{275}\)=\(\frac{54}{55}\)
Phân số \(\frac{54}{55}\)lớn hơn phân số \(\frac{47}{60}\)vì
\(\frac{54}{55}\)và \(\frac{47}{60}\)=\(\frac{3240}{3300}\)và \(\frac{2585}{3300}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{25}\)
\(=\left(\frac{1}{11}+\frac{1}{12}\right)+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+\frac{1}{25}\right)\)
\(\frac{1}{11}+\frac{1}{12}>\frac{1}{12}+\frac{1}{12}=\frac{2}{12}=\frac{10}{60}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}>\frac{1}{15}+\frac{1}{15}+\frac{1}{15}=\frac{3}{15}=\frac{12}{60}\)
\(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}=\frac{5}{20}=\frac{15}{60}\)
\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+\frac{1}{24}+\frac{1}{25}>\frac{1}{25}+\frac{1}{25}+\frac{1}{25}+\frac{1}{25}+\frac{1}{25}=\frac{5}{25}=\frac{1}{5}=\frac{12}{60}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{25}>\frac{10}{60}+\frac{12}{60}+\frac{15}{60}+\frac{12}{60}=\frac{49}{60}\)
Mà \(\frac{49}{60}>\frac{47}{60}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{25}>\frac{47}{60}\left(đpcm\right)\)
Mỗi phân số \(\frac{1}{11},\frac{1}{12},\frac{1}{13},...,\frac{1}{19}\)đều lớn hơn \(\frac{1}{20}\)
Do đó,\(S>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}(\)10 dãy \()\)
\(\Rightarrow S>\frac{10}{20}=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
\(⋮\)
\(\frac{1}{20}=\frac{1}{20}\)
Suy ra \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(có 10 số \(\frac{1}{20}\))
3/2 - 5/6 + 7/12 - 9/20 + 11/30 - 11/42 + 15/56 - 17/72 = -3923/1260 ( Đay là cách nhanh nhất bằng cách sử dụng CASIO ) khakha Đoàn Lê Bảo Ngọc
\(A = (\frac{1}{10} + ...+ \frac{1}{19} ) + (\frac{1}{20} + ...+ \frac{1}{29}) + (\frac{1}{30} +...+ \frac{1}{39} ) + (\frac{1}{40} + ...+\frac{1}{49} ) + (\frac{1}{50} +....+ \frac{1}{59}) + (\frac{1}{60} + ....+\frac{1}{69}) + \frac{1}{70}\)
Ta có : mỗi bên có 10 số hạng
\( (\frac{1}{10} + ..+ \frac{1}{19}) < (\frac{1}{10} + ...+ \frac{1}{10}) = \frac{1}{1}\)
\(\frac{1}{20}+..+ \frac{1}{29} < (\frac{1}{20}+..+\frac{1}{20}) = \frac{1}{2}\)
\((\frac{1}{30} +...+ \frac{1}{39} )< (\frac{1}{30} +...+ \frac{1}{30}) = \frac{1}{3}\)
\((\frac{1}{40} + ...+\frac{1}{49} )< (\frac{1}{40} + ...+\frac{1}{40}) = \frac{1}{4}\)
\((\frac{1}{50} +....+ \frac{1}{59})< (\frac{1}{50} +....+ \frac{1}{50}) = \frac{1}{5}\)
\((\frac{1}{60} + ....+\frac{1}{69}) + \frac{1}{70}< (\frac{1}{60} + ....+\frac{1}{60})+ \frac{1}{70} = \frac{1}{6} +\frac{1}{70}\)
\(\implies A < 1+\frac{1}{2} + ...+ \frac{1}{6} + \frac{1}{70}= \frac{13}{15} + \frac{1}{70} <1<\frac {51}{20} \)
\(\implies A<\frac{51}{20}\) \((đpcm)\)