K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2021

3x2( 2x2 - 2x + 1 ) = 6x4 - 6x3 + 3x2

( x - 2 )( x2 + 2x + 4 ) - x( x2 - 2 ) = x3 - 8 - x3 + 2x = 2x - 8 

a: \(=\dfrac{2\left(x+2\right)\left(x-1\right)}{x+2}=2x-2\)

b: \(=\dfrac{2x^3+x^2-6x^2-3x+2x+1}{2x+1}=x^2-3x+1\)

c: \(=\dfrac{x^3+2x^2-2x^2-4x+2x+4}{x+2}=x^2-2x+2\)

d: \(=\dfrac{x^2\left(x-3\right)}{x-3}=x^2\)

`@` `\text {Ans}`

`\downarrow`

loading...loading...

loading...

Bài 1: 

b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)

Bài 2: 

a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)

\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)

d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)

\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)

e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)

13 tháng 12 2021

Bài 2: 

a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

a) (3x- 5x + 2 ) . ( 1phần 5x - 3 )

=3/5x3-10x2+77/5x-6

b)( x​​^3 - 2x + 4 - x^4 ) . ( 1 - x^2 + 2x )

=x6-2x5+x4+3x3-8x2+6x+4

20 tháng 12 2021

c: \(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+2x+1}{x^2-x+1}\)

18 tháng 12 2021

a: \(=\dfrac{4x-2+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2x-1}{2x\left(2x-1\right)}\)

 

26 tháng 10 2019

Bài 1:

a) \(3x\left(5x^2-2x+1\right)\)

\(=15x^3-6x^2+3x\)

b) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^2\left(x^2-1\right)+2x\left(x^2-1\right)\)

\(=x^4-x^2+2x^3-2x\)

\(=x^4+2x^3-x^2-2x\)

Bài 2:

a) \(3x^2=2x\)

\(\Leftrightarrow3x^2-2x=0\)

\(\Leftrightarrow x\left(3x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{3}\end{cases}}\)

26 tháng 10 2019

b)\(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-2x-1=12x-5\)

\(\Leftrightarrow14x=4\Leftrightarrow x=\frac{2}{7}\)

Bài 2:

1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)

\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)

\(=x^3+2^3-2\left(x^2-1\right)\)

\(=x^3+8-2x^2+2=x^3-2x^2+10\)

\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)

\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)

\(=\left(-2y\right)^2+4\left(y+2\right)\)

\(=4y^2+4y+8\)

2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)

3: \(B=4y^2+4y+8\)

\(=4y^2+4y+1+7\)

\(=\left(2y+1\right)^2+7>=7>0\forall y\)

=>B luôn dương với mọi y

Bài 1:

5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)

\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)

\(=2x^3-x+x^2-y\)

6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)

\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)

\(=6x^2+23x-55-6x^2-84x-294\)

=-61x-349

21 tháng 10 2021

\(2x\left(x^2-7x-3\right)=2x^3-14x-6x\)

\(4xy^2\left(-2x^3+y^2-7xy\right)=-8x^4y^2+4xy^5-28x^2y^3\)

21 tháng 10 2021

all ạ