K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 10 2021

Đề mờ quá. Bạn cần bài nào thì nên chụp rõ/ gõ rõ bài đó ra.

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(x^2=2\left(m-1\right)x-m+2\Leftrightarrow x^2-2\left(m-1\right)x+m-2=0\) (1)

a.

(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm pb trái dấu

\(\Leftrightarrow ac=m-2< 0\)

\(\Rightarrow m< 2\)

b.

Xét (1), ta có \(\Delta'=\left(m-1\right)^2-\left(m-2\right)=m^2-3m+3=\left(m-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0;\forall m\)

\(\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m 

Hay (d) luôn cắt (P) tại 2 điểm pb với mọi m

b: Xét ΔABE vuông tại A có AH là đường cao ứng với cạnh huyền BE

nên \(BH\cdot BE=AB^2\left(1\right)\)

Xét ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)

1: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)AC tại D

Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại F

2: Xét ΔFBH vuông tại F và ΔFAC vuông tại F có

\(\widehat{FBH}=\widehat{FAC}\left(=90^0-\widehat{ACF}\right)\)

Do đó: ΔFBH~ΔFAC

=>\(\dfrac{FB}{FA}=\dfrac{FH}{FC}\)

=>\(FB\cdot FC=FA\cdot FH\)

3: Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

nên AEHD là tứ giác nội tiếp đường tròn đường kính AH

Tâm I là trung điểm của AH

 

NV
25 tháng 1

a.

Do MA là tiếp tuyến tại A \(\Rightarrow MA\perp OA\Rightarrow\widehat{MAO}=90^0\)

Xét hai tam giác OMA và OMB có:

\(\left\{{}\begin{matrix}OA=OB=R\\MA=MB\left(gt\right)\\OM\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OMA=\Delta OMB\left(c.c.c\right)\)

\(\Rightarrow\widehat{MBO}=\widehat{MAO}=90^0\)

\(\Rightarrow MB\perp OB\Rightarrow MB\) là tiếp tuyến

b.

Gọi H là giao điểm AB và OM

Ta có: \(\left\{{}\begin{matrix}OA=OB=R\\MA=MB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow OM\) là trung trực AB

\(\Rightarrow OM\perp AB\) tại H  đồng thời \(HA=HB=\dfrac{AB}{2}\)

Trong tam giác vuông OMA: \(cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{2}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AOM}=60^0\)

\(\Rightarrow\widehat{AMO}=90^0-\widehat{AOM}=30^0\)

\(\Rightarrow\widehat{AMB}=2\widehat{AMO}=60^0\)

\(\Rightarrow\Delta AMB\) đều (tam giác cân có 1 góc bằng 60 độ)

Trong tam giác vuông OAH:

\(AH=OA.sin\widehat{AOM}=R.sin60^0=\dfrac{R\sqrt{3}}{3}\)

\(\Rightarrow AB=2AH=R\sqrt{3}\)

\(OH=OA.cos\widehat{AOM}=R.cos30^0=\dfrac{R}{2}\)

\(\Rightarrow HM=OM-OH=\dfrac{3R}{2}\)

\(\Rightarrow S_{ABM}=\dfrac{1}{2}HM.AB=\dfrac{3R^2\sqrt{3}}{4}\)

c.

BE là đường kính \(\Rightarrow\widehat{BAE}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{BAE}=90^0\Rightarrow AB\perp AE\)

Mà \(AB\perp OM\) (theo cm câu b)

\(\Rightarrow AE||OM\) (cùng vuông góc AB)

NV
25 tháng 1

loading...

Bài 5:

a: \(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}=\dfrac{2a}{2\sqrt{a}}=\sqrt{a}\)

b: Để A-2>0 thì căn a-2>0

=>căn a>2

=>a>4

c: Để 4/A+1 là số nguyên thì \(\sqrt{a}+1\inƯ\left(4\right)\)

=>\(\sqrt{a}+1\in\left\{1;2;4\right\}\)

=>\(a\in\left\{1;9\right\}\)

5:

a: góc ACB=1/2*180=90 độ

Xét ΔAKH vuông tại K và ΔACB vuông tại A có

góc KAH chung

=>ΔAKH đồng dạng với ΔACB

b: Xét ΔADC và ΔBEC có

AD=BE

góc DAC=góc EBC

AC=BC

=>ΔADC=ΔBEC

=>DC=EC

=>ΔDEC cân tại C

góc CAB=45 độ

=>góc CDE=góc CAB=45 độ

=>ΔCDE vuông cân tại C

6 tháng 7 2021

Bài 2 :

a, - Thay hoành độ của A và B vào hàm số ta được :

\(\left\{{}\begin{matrix}y_A=1\\y_B=4\end{matrix}\right.\)

Vậy \(A\left(-2;1\right),B\left(4;4\right)\)

b, - Gọi phương trình đường thẳng AB có dạng \(y=ax+b\)

- Thay tọa độ của A và B vào ta được :

\(\left\{{}\begin{matrix}-2a+b=1\\4a+b=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=2\end{matrix}\right.\)

Vậy phương trình đường thẳng AB là : \(y=\dfrac{1}{2}x+2\)

15 tháng 12 2021

Bài 1:

\(1,ĐK:1-3x\ge0\Leftrightarrow x\le\dfrac{1}{3}\\ 2,2\sqrt{3}=\sqrt{12}< \sqrt{18}=3\sqrt{2}\\ 3,A=\left|\sqrt{5}-2\right|+\left|\sqrt{5}+2\right|=\sqrt{5}-2+\sqrt{5}+2=2\sqrt{5}\)