Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
\(A=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^2\left(x+1\right)-\left(x+1\right)}=\dfrac{\left(x^3+1\right)\left(x+1\right)}{\left(x^2-1\right)\left(x+1\right)}\)
\(=\dfrac{x^3+1}{x^2-1}=\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2-x+1}{x-1}\)
Lời giải:
b.
$B=\frac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}$
$=\frac{x^3-6x^2y}{x-6y}=\frac{x^2(x-6y)}{x-6y}=x^2$
c.
$C=\frac{(3x-1)(x-1)^2}{(2x+3)(x-1)^2}=\frac{3x-1}{2x+3}$
d.
$D=\frac{(x+3)(x-1)-(2x-1)(x+1)}{(x+1)(x-1)}-\frac{x-3}{(x-1)(x+1)}$
$=\frac{-x^2+1}{(x-1)(x+1)}=\frac{-(x^2-1)}{x^2-1}=-1$
\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
6a.
$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$
a) Thể tích không khí bên trong lều:
2².2 : 3 = 8/3 (m³)
b) Số vải bạt cần dùng:
2² + 4.2.2,24 : 2 = 4 + 8,96 = 12,96 (m²)
6:
a: Xét ΔCDM và ΔBAM có
MC=MB
góc CMD=góc BMA
MD=MA
=>ΔCDM=ΔBAM
b: ΔCDM=ΔBAM
=>góc CDM=góc BAM
=>CD//AB
Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AC//BD và AC=BD và AB=DC
c: Xét ΔABC có AB>AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB>HC
Xét ΔECB có HB>HC
mà HB,HC lần lượt là hình chiếu của EB,EC trên BC
nên EB>EC
Bài 4:
\(A=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ B=x^3-y^3-5+2y^3-x^3-y^3=-5\\ C=x^3-3x^2+3x-1-x^3-3x^2-3x-1-6x^2+6=4\)
đề bài dou e
giúp j vậy bn?