Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2< 1=1^2=>x< 1\) thỏa mãn bất phương trình
\(b,2x+5\ge7=>2x\ge7-5=2=>x\ge1\) thỏa mãn bất phương trình
c)\(\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge3\cdot\left(\frac{a}{b}+\frac{b}{a}\right)\)
Thế : \(\frac{\left(a-b\right)^2\left(a^2-ab+b^2\right)}{a^2b^2}\ge0\)
\(\Leftrightarrow\frac{\left(b-a\right)^2\left(a^2-ab+b^2\right)}{a^2b^2}\ge0\)
\(\Leftrightarrow\frac{a^4+4a^2b^2+b^4}{a^2b^2}\ge\frac{3\left(a^2+b^2\right)}{ab}\)
\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge\frac{3a}{b}+\frac{3b}{a}\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}+4>=3\cdot\left(\frac{a}{b}+\frac{b}{a}\right)\)
\(\frac{2016-x}{2017}\)+\(\frac{2017-x}{2016}\)+2=\(\frac{2016}{2017-x}\)+\(\frac{2017}{2016-x}\)+2
\(\frac{4033-x}{2017}\)+\(\frac{4033-x}{2016}\)=\(\frac{4033-x}{2017-x}\)+\(\frac{4033-x}{2016-x}\)
(4033-x)(\(\frac{1}{2017}\)+\(\frac{1}{2016}\)-\(\frac{1}{2017-x}\)-\(\frac{1}{2016-x}\))=0
=>\(\hept{\begin{cases}4033-x=0\\\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2017-x}-\frac{1}{2016-x}\end{cases}}=0\)
=>x=4033
x=0
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
a) x2 < 1 nên IxI < 1 <=> -1 < x < 1
b) \(2x+5\le7\)nên 2x\(\le2\)=> x\(\le1\)
a, TK:
(x lẻ do \(2y^2-8y+3=2\left(y^2-4y\right)+3=x^2\) lẻ)
\(b,\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+4y+4\right)=9\\ \Leftrightarrow\left(x-2\right)^2+\left(y+2\right)^2=9\)
Vậy pt vô nghiệm do 9 ko phải tổng 2 số chính phương
\(\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}=\frac{x+2015}{5}+\frac{x+2016}{4}+\frac{x+2017}{3}\)
\(\Leftrightarrow\frac{x+5}{2015}+\frac{x+4}{2016}+\frac{x+3}{2017}-\frac{x+2015}{5}-\frac{x+2016}{4}-\frac{x+2017}{3}=0\)
\(\Leftrightarrow\left(\frac{x+5}{2015}+1\right)+\left(\frac{x+4}{2016}+1\right)+\left(\frac{x+3}{2017}+1\right)-\left(\frac{x+2015}{5}+1\right)-\left(\frac{x+2016}{4}+1\right)\)
\(-\left(\frac{x+2017}{3}+1\right)=0\)
\(\Leftrightarrow\frac{x+2020}{2015}+\frac{x+2020}{2016}+\frac{x+2020}{2017}-\frac{x+2020}{5}-\frac{x+2020}{4}-\frac{x+2020}{3}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
\(\Leftrightarrow x+2020=0\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\right)\)
<=> x=-2020
Vậy x=-2020
Xét :
1. Nếu x = 2016 hoặc x = 2017 thì thỏa mãn đề bài
2. Nếu \(x< 2016\) thì \(\left|x-2016\right|^{2016}>0\) , \(\left|x-2017\right|^{2017}>1\)
Suy ra \(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}>1\)=> Vô nghiệm.
3. Nếu \(x>2017\) thì \(\left|x-2016\right|^{2016}>1\) , \(\left|x-2017\right|^{2017}>0\)
Suy ra \(\left|x-2016\right|^{2016}+\left|x-2017\right|^{2017}>1\) => Vô nghiệm.
Vậy pt có hai nghiệm là ............................
Áp dụng \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) khi \(AB\ge0\)
Ta có: \(\left|x-2016\right|+\left|x-2017\right|=\left|x-2016\right|+\left|2017-x\right|\ge\left|x-2016+2017-x\right|=1\)
Dấu "=" khi \(\left(x-2016\right)\left(2017-x\right)\ge0\Leftrightarrow2016\le x\le2017\)
Vậy khi \(2016\le x\le2017\) thì \(\left|x-2016\right|+\left|x-2017\right|=1\)