K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 13:

a: \(B=\dfrac{2\sqrt{x}}{\sqrt{x}-3}+\dfrac{x+9\sqrt{x}}{9-x}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

b:

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{16;9\right\}\end{matrix}\right.\)

 \(P=B:A=\dfrac{\sqrt{x}}{\sqrt{x}+3}:\dfrac{x+4\sqrt{x}}{x-16}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}{\sqrt{x}\left(\sqrt{x}+4\right)}\)

\(=\dfrac{\sqrt{x}-4}{\sqrt{x}+3}\)

Để P<0 thì \(\dfrac{\sqrt{x}-4}{\sqrt{x}+3}< 0\)

=>\(\sqrt{x}-4< 0\)

=>\(\sqrt{x}< 4\)

=>0<=x<16

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 16\\x\ne9\end{matrix}\right.\)

Bài 15:

a: A=P*Q

\(=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}+\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}-\dfrac{4}{\sqrt{x}}\right)\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{4}{\sqrt{x}}\right)\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}+1+x-\sqrt{x}+1-4}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{2x-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(=\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{2\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

b: \(A\cdot\sqrt{x}< 8\)

=>

\(2\left(\sqrt{x}-1\right)^2< 8\)

=>\(\left(\sqrt{x}-1\right)^2< 4\)

=>\(-2< \sqrt{x}-1< 2\)

=>\(-1< \sqrt{x}< 3\)

=>\(0< =\sqrt{x}< 3\)

=>0<=x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< x< 9\\x\ne1\end{matrix}\right.\)

18 tháng 10 2021

Bài III:

1: Ta có: \(\sqrt{x-3}=5\)

\(\Leftrightarrow x-3=25\)

hay x=28

2: Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}-5}=\dfrac{1}{3}\)

\(\Leftrightarrow3\sqrt{x}-6=\sqrt{x}-5\)

\(\Leftrightarrow2\sqrt{x}=1\)

hay \(x=\dfrac{1}{4}\)

30 tháng 11 2021

Bài 2: 

Để hai đồ thị song song thì \(\left\{{}\begin{matrix}m^2-2=-1\\m+2\ne3\end{matrix}\right.\Leftrightarrow m=-1\)

30 tháng 11 2021

Bài 2:

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2=-1\\m+2\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=1\\m\ne1\end{matrix}\right.\Leftrightarrow m=-1\)

17 tháng 9 2021

Gọi tam giác ABC vuông tại A, trung tuyến AM, đường cao AH

\(\Rightarrow AM=5\left(cm\right);AH=4\left(cm\right)\)

Ta có AM là trung tuyến ứng với cạnh huyền BC

\(\Rightarrow BC=2AM=10\left(cm\right)\)

Áp dụng HTL tam giác \(AH\cdot BC=AB\cdot AC\Rightarrow AB\cdot AC=40\Rightarrow AB=\dfrac{40}{AC}\\ \dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{1}{16}=\dfrac{1}{\dfrac{1600}{AC^2}}+\dfrac{1}{AC^2}\\ \Rightarrow\dfrac{AC^4+1600}{1600AC^2}=\dfrac{100AC^2}{1600AC^2}\Rightarrow AC^4-100AC^2+1600=0\\ \Rightarrow\left(AC^2-80\right)\left(AC^2-20\right)=0\\ \Rightarrow\left[{}\begin{matrix}AC^2=80\\AC^2=20\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}AC=4\sqrt{5}\left(AC>0\right)\\AC=2\sqrt{5}\left(AC>0\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}AB=2\sqrt{5}\\AB=4\sqrt{5}\end{matrix}\right.\)

Vậy với AB là cạnh góc vuông lớn thì \(\left(AB;AC;BC\right)=\left(4\sqrt{5};2\sqrt{5};10\right)\)

 

17 tháng 9 2021

Em cần cả hình vẽ lẫn lời giải luôn nha :3

17 tháng 10 2021

Bài 7:

a: \(A=x+\sqrt{x}\ge0\forall x\)

Dấu '=' xảy ra khi x=0

28 tháng 10 2021

\(BC=\sqrt{8^2+5^2}=\sqrt{89}\approx9,4\left(cm\right)\)

Bài 5: 

a: Xét ΔBEC và ΔADC có 

\(\widehat{C}\) chung

\(\widehat{EBC}=\widehat{DAC}\)

Do đó: ΔBEC\(\sim\)ΔADC