Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: k=y/x=7/10
b: y=7/10x
c: Khi x=-6 thì y=-7/10*6=-42/10=-21/5
Khi x=1/7 thì y=1/7*7/10=1/10
Gọi số học sinh mỗi loại của khối 7 lần lượt là: \(a,b,c\left(a,b,c>0\right)\)
Áp dụng tc dtsbn:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{4+5+6}=\dfrac{120}{15}=8\)
\(=>\left\{{}\begin{matrix}a=32\left(hs\right)\\b=40\left(hs\right)\\c=48\left(hs\right)\end{matrix}\right.\)
Vậy...........
Bài 5:
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y-z}{2+3-4}=\dfrac{-20}{1}=-20\)
Do đó: x=-40; y=-60; z=-80
Bài 1:
a, Xét ΔABC và ΔCDA có:
AB=CD(gt)
AD=BC(gt)
Chung AC
⇒ΔABC = ΔCDA (c.c.c)
b, ΔABC = ΔCDA(cma) ⇒\(\widehat{ACB}=\widehat{CAD}\) ( 2 góc tương ứng)
Mà 2 góc này ở vị trị so le trong với nhau ⇒ AD // BC
Bn vẽ hình bài 1 cho mik đc ko ạ! Mik chưa hiểu rõ lắm!
10: Chọn B
Ot là phân giác của \(\widehat{MOP}\)
=>\(\widehat{MOP}=2\cdot\widehat{tOP}\)
\(\widehat{MOP}=\widehat{NOQ}\)
=>\(\widehat{NOQ}=2\cdot\widehat{tOP}\)
mà \(\widehat{tOP}=\widehat{t'OQ}\)(hai góc đối đỉnh)
nên \(\widehat{NOQ}=2\cdot\widehat{t'OQ}\)
=>Ot' là phân giác của góc NOQ
11:
OC là phân giác của góc AOB
=>\(\widehat{AOC}=\widehat{BOC}=\dfrac{50^0}{2}=25^0\)
\(\widehat{DOE}=\widehat{BOC}\left(=25^0\right)\)
=>\(\widehat{DOE}+\widehat{DOB}=180^0\)
=>OB và OE là hai tia đối nhau
=>Hai góc đối đỉnh là \(\widehat{BOC};\widehat{DOE}\)
=>Chọn D
12:
\(\widehat{AOC}+\widehat{AOD}=180^0\)
\(\widehat{AOC}-\widehat{AOD}=50^0\)
Do đó: \(\widehat{AOC}=\dfrac{180^0+50^0}{2}=115^0;\widehat{AOD}=115^0-50^0=65^0\)
=>\(\widehat{BOC}=\widehat{AOD}=65^0\)
=>Chọn B
1:
a: Xét ΔABC có
AD,BE là các đường cao
AD cắt BE tại I
Do đó: I là trực tâm của ΔABC
=>CI\(\perp\)AB
b: ΔBEC vuông tại E
=>\(\widehat{EBC}+\widehat{ECB}=90^0\)
=>\(\widehat{EBC}=90^0-50^0=40^0\)
Bài 2:
a: Xét ΔABC có
CI,BI là các đường phân giác
Do đó: I là tâm đường tròn nội tiếp ΔABC
=>AI là phân giác của góc BAC
CI là phân giác của góc ACB
=>\(\widehat{ACB}=2\cdot\widehat{ICB}=46^0\)
BI là phân giác của góc ABC
=>\(\widehat{ABC}=2\cdot\widehat{ICB}=74^0\)
Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
=>\(\widehat{BAC}+46^0+74^0=180^0\)
=>\(\widehat{BAC}=60^0\)
=>\(x=\dfrac{\widehat{BAC}}{2}=30^0\)
b: Xét ΔDEF có
EH,DH là các đường phân giác
Do đó: H là tâm đường tròn nội tiếp ΔDEF
=>FH là phân giác của góc DFE
EH là phân giác của góc DEF
=>\(\widehat{DEF}=2\cdot\widehat{HEF}=64^0\)
Xét ΔDEF có DE=DF
nên ΔDEF cân tại D
=>\(\widehat{DFE}=\widehat{DEF}=64^0\)
=>\(x=\dfrac{64^0}{2}=32^0\)