Giúp em vơi ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2021

\(\overrightarrow{AB}=\left(1;1\right)\Rightarrow AB=\sqrt{2}\)

Từ C hạ CH vuông góc AB \(\Rightarrow S_{ABC}=\dfrac{1}{2}CH.AB\Rightarrow CH=\dfrac{2S_{ABC}}{AB}=\dfrac{3}{\sqrt{2}}\)

Từ G hạ GK vuông góc AB, gọi M là trung điểm AB

Theo định lý Talet: \(\dfrac{GK}{CH}=\dfrac{GM}{CM}=\dfrac{1}{3}\Rightarrow d\left(G;AB\right)=GK=\dfrac{CH}{3}=\dfrac{\sqrt{2}}{2}\)

Phương trình AB có dạng: 

\(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)

G thuộc d nên tọa độ có dạng: \(G\left(a;3a-8\right)\)

\(d\left(G;AB\right)=\dfrac{\sqrt{2}}{2}=\dfrac{\left|a-\left(3a-8\right)-5\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|-2a+3\right|=1\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}G\left(1;-5\right)\\G\left(2;-2\right)\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_C=3x_G-\left(x_A+x_B\right)=...\\y_C=3y_G-\left(y_A+y_B\right)=...\end{matrix}\right.\)

14 tháng 7 2016

Xét 2 trường hợp:

Th1:x^2-2x+m-x^2-3x+m+1=0

Th2:x^2-2x+m+x^2+3x-m-1=0

lập đenta ra là dc

14 tháng 7 2016

tks

20 tháng 10 2021

???????

20 tháng 10 2021

simp!

14 tháng 10 2017

câu 1:

a2+b2+c2+42 = 2a+8b+10c

<=> a2-2a+1+b2 -8b+16+c2-10c+25=0

<=> (a-1)2+(b-4)2+(c-5)2=0

<=>a=1 và b=4 và c=5

=> a+b+c = 10

14 tháng 10 2017

ta có 2(a2+b2)=5ab

<=> 2a2+2b2-5ab=0

<=> 2a2-4ab-ab+2b2=0

<=> 2a(a-2b)-b(a-2b)=0

<=> (a-2b)(2a-b)=0

<=> a=2b(thỏa mãn)

hoặc b=2a( loại vì a>b)

với a=2b =>P=5b/5b=1

Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

DO đó; OM là tia phân giác của góc AOB

Xét ΔOAM vuông tại A có 

\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)

nên \(\widehat{AOM}=60^0\)

=>\(\widehat{AOB}=120^0\)

14 tháng 10 2017

Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)

Thay 1 vào x, ta có

f(x) =14+12+a=0

2+a=0 suy ra a=-2

30 tháng 10 2017

Hoành độ đỉnh: \(\dfrac{-b}{2a}=-\dfrac{-2}{2}=1\)

a > 0 nên đồ thị hướng lên

Vậy HS đồng biến trong khoảng (1;+\(\infty\)) -> Chọn A

28 tháng 8 2021

Mình trình bày cho dễ hiểu nha

\(sina-\sqrt{3}cosa\)   

\(=2\cdot\left(\frac{1}{2}sina-\frac{\sqrt{3}}{2}cosa\right)\)

\(=2\cdot\left(sinacos\frac{pi}{6}-cosasin\frac{pi}{6}\right)\)

\(=2\cdot sin\left(a-\frac{pi}{6}\right)\)

Ta có\(-1\le sin\left(a-\frac{pi}{6}\right)\le1\)   

\(-2\le sin\left(a-\frac{pi}{6}\right)\le2\)   

Vậy Min=-2

Max=2

28 tháng 8 2021
Ăn đâu BUI đi 💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩