K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\left(\sqrt{14}+\sqrt{6}\right)\left(\sqrt{5}-\sqrt{21}\right)\)

\(=\sqrt{70}-7\sqrt{6}+\sqrt{30}-3\sqrt{14}\)

 

10 tháng 7 2021

em cảm ơn ạ vui

nhưng sao ko làm hết cả bài cho em ạ ????ngaingung

2 tháng 10 2021

\(2,\\ 1,=20\sqrt{3}+20\sqrt{3}+\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=40\sqrt{3}+\sqrt{3}=41\sqrt{3}\\ 2,A=\dfrac{2\sqrt{x}-9-x+9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{2\sqrt{x}-x+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\\ c,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\left(4>0\right)\\ \Leftrightarrow x< 9\Leftrightarrow0\le x< 9\)

 

2 tháng 10 2021

\(3,\\ 1,A=\sqrt{2}-1-\dfrac{\sqrt{2}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}=\sqrt{2}-1-\sqrt{2}=-1\\ 2,\\ a,P=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}\left(x\ge0;x\ne4\right)\\ P=\dfrac{4\left(\sqrt{x}+2\right)}{4\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\\ b,P< 1\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-1< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-2}< 0\Leftrightarrow\sqrt{x}-2< 0\left(4>0\right)\\ \Leftrightarrow x< 4\Leftrightarrow0\le x< 4\)

1) Ta có: \(\sqrt{2x+5}=\sqrt{3-x}\)

\(\Leftrightarrow2x+5=3-x\)

\(\Leftrightarrow2x+x=3-5\)

\(\Leftrightarrow3x=-2\)

hay \(x=-\dfrac{2}{3}\)

2) Ta có: \(\sqrt{2x-5}=\sqrt{x-1}\)

\(\Leftrightarrow2x-5=x-1\)

\(\Leftrightarrow2x-x=-1+5\)

\(\Leftrightarrow x=4\)

23 tháng 8 2021

3 , \(PT\left(đk:\frac{16}{3}\ge x\ge3\right)< =>x^2-3x=16-3x\)

\(< =>x^2-16=0< =>\left(x-4\right)\left(x+4\right)=0< =>\orbr{\begin{cases}x=4\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)

4 , \(PT\left(đk:...\right)< =>2x^2-3=4x-3< =>2x^2-4x=0\)

\(< =>2x\left(x-2\right)=0< =>\orbr{\begin{cases}x=0\left(...\right)\\x=2\left(...\right)\end{cases}}\)

bạn tự tìm đk rồi đối chiếu nhé :P

1) Ta có: \(\sqrt{4x}=\sqrt{5}\)

nên 4x=5

hay \(x=\dfrac{5}{4}\)

2) Ta có: \(\sqrt{16x}=8\)

nên 16x=64

hay x=4

 

23 tháng 8 2021

3, \(2\sqrt{x}=\sqrt{9x}-3\left(đk:x\ge0\right)\)

\(< =>2\sqrt{x}-3\sqrt{x}+3=0\)

\(< =>3-\sqrt{x}=0< =>x=9\)(tmđk)

4, \(\sqrt{3x-1}=4\left(đk:x\ge\frac{1}{3}\right)\)

\(< =>3x-1=16< =>3x-17=0\)

\(< =>x=\frac{17}{3}\)(tmđk)

7 tháng 9 2021

g) \(\left\{{}\begin{matrix}x-1\ge0\\2-\sqrt{x-1}\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\sqrt{x-1}\le2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\-4\le x-1\le4\end{matrix}\right.\)

\(\Leftrightarrow1\le x\le5\)

h) \(\left\{{}\begin{matrix}\dfrac{2x-4}{5-x}\ge0\\5-x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-4\ge0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-4\le0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\\x\ne5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}5>x\ge2\left(tm\right)\\5< x\le2\left(vl\right)\end{matrix}\right.\\x\ne5\end{matrix}\right.\)

\(\Leftrightarrow5>x\ge2\)

i) \(x^2-8x-9\ge0\)\(\Leftrightarrow\left(x-4\right)^2-25\ge0\Leftrightarrow\left(x-4\right)^2\ge25\)

\(\Leftrightarrow-5\ge x-4\ge5\)\(\Leftrightarrow-1\ge x\ge9\)

j) \(2x-x^2>0\)

\(\Leftrightarrow\left(x-1\right)^2< 1\)

\(\Leftrightarrow-1< x-1< 1\Leftrightarrow0< x< 2\)

a: ĐKXĐ: \(2\le x\le4\)

b: ĐKXĐ: x>0

c: ĐKXĐ: \(x< \dfrac{1}{3}\)