K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

uiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiyhAAAAAAAAAAAAAAAAAAAAAAAAA

26 tháng 11 2023

a: MNPQ là hình bình hành

=>MQ//NP

=>MQ//IP

Xét tứ giác MIPQ có IP//MQ

nên MIPQ là hình thang

b: ΔMNP vuông cân tại N

=>MN=NP và \(\widehat{MNP}=90^0\)

Hình bình hành MNPQ có \(\widehat{MNP}=90^0\)

nên MNPQ là hình chữ nhật

=>\(\widehat{Q}=\widehat{P}=90^0\)

Xét ΔMNI vuông tại N có \(sinNMI=\dfrac{NI}{MN}=\dfrac{2}{3}\)

nên \(\widehat{NMI}\simeq42^0\)

\(\widehat{NMI}+\widehat{QMI}=\widehat{NMQ}=90^0\)

=>\(\widehat{QMI}+42^0=90^0\)

=>\(\widehat{QMI}=48^0\)

IP//MQ

=>\(\widehat{QMI}+\widehat{MIP}=180^0\)(hai góc trong cùng phía)

=>\(\widehat{MIP}+48^0=180^0\)

=>\(\widehat{MIP}=132^0\)

1 tháng 10 2021

\(36x^2-25=\left(6x-5\right)\left(6x+5\right)\)

7 tháng 3 2022

dễ mà bạn

a)3x-18=0                     à mà mik chx hc phương trình 

3x=18+0                          sorry bạn nhé

3x=18

x=18:3

x=6

vậy x=6

a)\(3x-18=0\)

\(\Leftrightarrow3x=18\)

\(\Leftrightarrow x=6\)

Vậy x=6

b)\(2x.\left(x-4\right)-3x+12=0\)

\(\Leftrightarrow2x.\left(x-4\right)-3\left(x-4\right)=0\)

\(\Leftrightarrow\left(2x-3\right).\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=4\end{cases}}}\)

Vậy .......

c)\(\frac{x-1}{2}-\frac{x+3}{3}=x+1\)

\(\Leftrightarrow6.\left(\frac{x-1}{2}-\frac{x+3}{3}\right)=6.\left(x+1\right)\)

\(\Leftrightarrow3.\left(x-1\right)-2.\left(x+3\right)=6x+6\)

\(\Leftrightarrow3x-3-2x-6=6x+6\)

\(\Leftrightarrow3x-2x-6x=6+3+6\)

\(\Leftrightarrow-5x=15\)

\(\Leftrightarrow x=-3\)

Vậy x= -3

d)\(\frac{x-3}{x+3}-\frac{5}{3-x}=\frac{30}{x^2-9}\)

\(\Leftrightarrow\frac{x-3}{x+3}-\frac{-5}{x-3}=\frac{30}{\left(x+3\right).\left(x-3\right)}\)

\(\Leftrightarrow\frac{\left(x-3\right).\left(x-3\right)}{\left(x+3\right).\left(x-3\right)}-\frac{-5.\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}=\frac{30}{\left(x-3\right).\left(x+3\right)}\)

\(\Leftrightarrow\left(x-3\right)^2-\left(-5\right).\left(x+3\right)=30\)

\(\Leftrightarrow x^2-6x+9-\left(-5x-15\right)=30\)

\(\Leftrightarrow x^2-6x+9+5x+15-30=0\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}}\)

Vậy......

easy

x(4+1) : x(x+1)=0

(x:x) 5(x+1)=0

5x+5=0

5x=-5

x=-1

4 tháng 1 2022

=x ∈ ∅ nhé

4 tháng 1 2022

Answer:

\(\left(x^2+4x+4\right):\left(x+2\right)\)

\(=\frac{\left(x+2\right)^2}{x+2}\)

\(=\frac{\left(x+2\right)\left(x+2\right)}{x+2}\)

\(=x+2\)

21 tháng 8 2018

Ta có:(n-3)(n+3)-(n-7)(n-3)             (1)

        =(n-3)(n+3-n+7)

        =10(n-3)

Vậy PT(1) chia hết cho 10

21 tháng 8 2018

\(\left(n-3\right)\left(n+3\right)-\left(n-7\right)\left(n-3\right)=\left(n-3\right)[n+3-\left(n-7\right)]\)

\(=\left(n-3\right)\left(n+3-n+7\right)=\left(n-3\right)\cdot10⋮10\)(ĐPCM)

23 tháng 7 2015

\(4x^2-y^2+4x+1=\left(2x+1\right)^2-y^2=\left(2x+1-y\right)\left(2x+1+y\right)\)

trả lời 

=(2x+1-y)(2x+1+y)

chúc bn

học tốt 

Câu 2:

a: Không

b: Không

Câu 3:

a: \(\widehat{B}=\widehat{zAB}\left(=124^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên Bt//Az

b: n\(\perp\)DC

m\(\perp\)DC

Do đó: n//m

c: \(\widehat{xEG}+\widehat{yGE}=70^0+110^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên Ex//Gy

d: Vẽ lại hình, ta sẽ có:

loading...

Ta có: \(\widehat{B_4}=\widehat{B_2}\)(hai góc đối đỉnh)

mà \(\widehat{B_4}=56^0\)

nên \(\widehat{B_2}=56^0\)

Ta có: \(\widehat{A_1}+\widehat{B_2}=124^0+56^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên m//v

 

12 tháng 6 2018

5B=-25x2 -20x+5 = 9 - (25x2 +20x +4) = 9- (5x+2)2 \(\le9\)

=> B\(\le\frac{9}{5}\)<=> x=-2/5

12 tháng 6 2018

Tìm GTLN của: \(B=-5x^2-4x+1\)

Ta có 

\(B=-5x^2-4x+1\)

\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)

\(B=-5\left[x^2+2x.\frac{2}{5}+\left(\frac{2}{5}\right)^2-\frac{4}{25}-\frac{5}{25}\right]\)

\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)

\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\)

Mà \(-5\left(x+\frac{2}{5}\right)^2\le0\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{-2}{5}\)

=> \(-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{-2}{5}\)

Vậy B có GTLN bằng \(\frac{9}{5}\)khi \(x=\frac{-2}{5}\).

Tìm GTLN của: \(C=-2x^2+10x+3\)

Ta có

\(C=-2x^2+10x+3\)

\(C=-2\left(x^2-5x-\frac{3}{2}\right)\)

\(C=-2\left[x^2-2x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{25}{4}-\frac{9}{4}\right]\)

\(C=-2\left[\left(x-\frac{5}{2}\right)^2-\frac{17}{2}\right]\)

\(C=-2\left(x-\frac{5}{2}\right)^2+17\)

Mà \(-2\left(x-\frac{5}{2}\right)^2\le0\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{5}{2}\)

=> \(-2\left(x-\frac{5}{2}\right)^2+17\le17\). Dấu "=" xảy ra khi và chỉ khi \(x=\frac{5}{2}\)

Vậy C có GTLN bằng 17 khi \(x=\frac{5}{2}\)