K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 5 2021

\(\Delta'=\left(m-1\right)^2-m^2\ge0\Rightarrow m\le\dfrac{1}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2\end{matrix}\right.\)

\(x_1^2+2\left(m-1\right)x_2=15\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2+2\left(m-1\right)x_2=15\)

\(\Leftrightarrow2\left(m-1\right)x_1+2\left(m-1\right)x_2-m^2=15\)

\(\Leftrightarrow2\left(m-1\right)\left(x_1+x_2\right)-m^2-15=0\)

\(\Leftrightarrow4\left(m-1\right)^2-m^2-15=0\)

\(\Leftrightarrow3m^2-8m-11=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{11}{3}>\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

a: ΔOCB cân tại O

mà OI là đường trung tuyến

nên OI vuông góc CB

Vì góc OIA=góc OMA=góc ONA

nên O,M,N,I,A cùng thuộc 1 đường tròn

b: Xét ΔABN và ΔANC có

góc ABN=góc ANC

góc BAN chung

=>ΔABN đồng dạng với ΔANC
=>AB/AN=AN/AC

=>AN^2=AB*(AB+BC)

=>4*(BC+4)=6^2=36

=>BC=5cm

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

NV
25 tháng 12 2020

\(a^3+b^3=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}\)

\(=\sqrt{6}-\sqrt{2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}=0\)

\(\Rightarrow a=-b\Rightarrow a^5+b^5=0\)

28 tháng 12 2020

Dạ em cảm ơn ạ

5 tháng 2 2022

\(b,\dfrac{\sqrt{12}-\sqrt{6}}{\sqrt{30}-\sqrt{15}}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{\sqrt{15}\left(\sqrt{2}-1\right)}=\dfrac{\sqrt{6}}{\sqrt{15}}=\dfrac{\sqrt{2}}{\sqrt{5}}\)

\(d,\dfrac{ab-bc}{\sqrt{ab}-\sqrt{bc}}=\dfrac{\left(\sqrt{ab}-\sqrt{bc}\right)\left(\sqrt{ab}+\sqrt{bc}\right)}{\left(\sqrt{ab}-\sqrt{bc}\right)}=\sqrt{ab}+\sqrt{bc}=\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)\)

\(e,\left(a\sqrt{\dfrac{a}{b}+2\sqrt{ab}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)

\(=a\left(\sqrt{\dfrac{a}{b}+\dfrac{2b.\sqrt{ab}}{b}}+b\sqrt{\dfrac{a}{b}}\right)\sqrt{ab}\)

\(=a\sqrt{a}\sqrt{a+2b\sqrt{ab}}+b\sqrt{a^2}\)

\(=a\sqrt{a^2+2ab\sqrt{ab}}+ab\)

\(=a\left(\sqrt{a^2+2ab\sqrt{ab}}+b\right)\)

\(f,\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)

\(=\left(a+\sqrt{a}+1+\sqrt{a}\right)\left(a-\sqrt{a}+1-\sqrt{a}\right)\)

\(=\left(a+2\sqrt{a}+1\right)\left(a-2\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2\)

\(=\left(a-1\right)^2=a^2-2a+1\)

NV
12 tháng 4 2021

\(A=\sqrt{2a\left(b+1\right)}+\sqrt{2b\left(c+1\right)}+\sqrt{2c\left(a+1\right)}\)

\(A=\dfrac{1}{\sqrt{2}}\sqrt{4a\left(b+1\right)}+\dfrac{1}{\sqrt{2}}\sqrt{4b\left(c+1\right)}+\dfrac{1}{\sqrt{2}}\sqrt{4c\left(a+1\right)}\)

\(A\le\dfrac{1}{2\sqrt{2}}\left(4a+b+1\right)+\dfrac{1}{2\sqrt{2}}\left(4b+c+1\right)+\dfrac{1}{2\sqrt{2}}\left(4c+a+1\right)\)

\(A\le\dfrac{1}{2\sqrt{2}}\left[5\left(a+b+c\right)+3\right]=2\sqrt{2}\)

\(A_{max}=2\sqrt{2}\) khi \(a=b=c=\dfrac{1}{3}\)

12 tháng 4 2021

em cảm ơn nhiều!

DD
28 tháng 5 2022

Câu 10: 

Gọi \(H\) là giao điểm của \(MO\) và \(AB\).

Xét tam giác \(MAO\) vuông tại \(A\) đường cao \(AH\)

\(\dfrac{1}{AH^2}=\dfrac{1}{MA^2}+\dfrac{1}{AO^2}\Leftrightarrow\dfrac{1}{\left(\dfrac{R\sqrt{2}}{2}\right)^2}=\dfrac{1}{MA^2}+\dfrac{1}{R^2}\Leftrightarrow MA=R\).

\(S_{MAOB}=S_{MAO}+S_{MBO}\)

\(=\dfrac{1}{2}.AO.MA+\dfrac{1}{2}.OB.MB\)

\(=\dfrac{1}{2}.R.R+\dfrac{1}{2}.R.R=R^2\)

Chọn C. 

29 tháng 5 2022

Đài ơi, giải giúp cho Sarah đi, tớ không có viết và giờ vào giường rồi , good nigh