K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Độ dài cạnh đối diện với góc 30 độ là 9cm

7 tháng 10 2021

Dạ e cảm ơn

a) Xét tứ giác ADHE có 

\(\widehat{ADH}\) và \(\widehat{AEH}\) là hai góc đối

\(\widehat{ADH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ADHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{C}+35^0=90^0\)

hay \(\widehat{C}=55^0\)

Xét ΔABC vuông tại A có

\(AC=AB\cdot\tan35^0\)

\(\Leftrightarrow AC=6\cdot\tan35^0\)

hay \(AC\simeq4,2\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+4.2^2=53.64\)

hay \(BC\simeq7.32\left(cm\right)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot7.32=4.2\cdot6=25.2\)

hay \(AH\simeq3.44\left(cm\right)\)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(AM=\dfrac{1}{2}BC\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\dfrac{1}{2}\cdot7.32=3.66\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHM vuông tại H, ta được:

\(AM^2=AH^2+MH^2\)

\(\Leftrightarrow MH^2=3.66^2-3.44^2=1.562\)

hay \(MH\simeq1.25\left(cm\right)\)

Diện tích tam giác AHM là:

\(S_{AHM}=\dfrac{AH\cdot HM}{2}=\dfrac{3.44\cdot1.25}{2}=2.15\left(cm^2\right)\)

NV
25 tháng 7 2021

a.

\(\Leftrightarrow\dfrac{2a}{2a+b}+\dfrac{2b}{2b+c}+\dfrac{2c}{2c+a}\le2\)

\(\Leftrightarrow\dfrac{2a}{2a+b}-1+\dfrac{2b}{2b+c}-1+\dfrac{2c}{2c+a}-1\le-1\)

\(\Leftrightarrow\dfrac{b}{2a+b}+\dfrac{c}{2b+c}+\dfrac{a}{2c+a}\ge1\)

Thật vậy, ta có:

\(VT=\dfrac{b^2}{2ab+b^2}+\dfrac{c^2}{2bc+c^2}+\dfrac{a^2}{2ca+a^2}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

NV
25 tháng 7 2021

b.

Chuẩn hóa \(a+b+c=1\), BĐT cần chứng minh trở thành:

\(\dfrac{a}{\left(a+2b\right)^2}+\dfrac{b}{\left(b+2c\right)^2}+\dfrac{c}{\left(c+2a\right)^2}\ge1\)

Ta có:

\(\dfrac{a}{\left(a+2b\right)^2}+a\left(a+2b\right)+a\left(a+2b\right)\ge3a\)

Tương tự:

\(\dfrac{b}{\left(b+2c\right)^2}+b\left(b+2c\right)+b\left(b+2c\right)\ge3b\)

\(\dfrac{c}{\left(c+2a\right)^2}+c\left(c+2a\right)+c\left(c+2a\right)\ge3c\)

Cộng vế:

\(VT+2\left(a+b+c\right)^2\ge3\left(a+b+c\right)\)

\(\Leftrightarrow VT+2\ge3\)

\(\Leftrightarrow VT\ge1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Câu 3:

2: Xét tứ giác OKEH có 

\(\widehat{OKE}=\widehat{OHE}=\widehat{KOH}=90^0\)

Do đó: OKEH là hình chữ nhật

mà đường chéo OE là tia phân giác của \(\widehat{KOH}\)

nên OKEH là hình vuông

8 tháng 5 2022

ko thấy cái đề đâu á

8 tháng 5 2022

Cai này mik vt theo kiểu sơ đồ các bươc thôi nhé

Bài 1: 

a: \(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)

b: \(=\sqrt{11}+\sqrt{2}-\sqrt{11}-\sqrt{7}-\sqrt{2}=-\sqrt{7}\)

Câu 1: 

Gọi chiều rộng là x

Chiều dài là x+20

Theo đề, ta có: 2(x+x+20)=104

=>2x+20=52

=>2x=32

hay x=16

Vậy: Diện tích của miếng đất là 16x36=576(m2)

28 tháng 2 2022

Xin lỗi nhưng e cần bài này dạng Giải bài bằng cách lập hệ phương trình ạ

7 tháng 2 2022

\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{\sqrt{x}+1}\left(đk:x\ne1,x\ge0\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}-2\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

7 tháng 2 2022

ĐKXĐ: \(x\ne1,x\ge0\)

\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{\sqrt{x}+1}=\)\(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}-\dfrac{2\sqrt{x}}{x-1}-\dfrac{\sqrt{x}-1}{x-1}=\)\(\dfrac{x+\sqrt{x}-2\sqrt{x}-\sqrt{x}+1}{x-1}=\)\(\dfrac{x-2\sqrt{x}+1}{x-1}=\)\(\dfrac{(\sqrt{x}-1)^2}{x-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)