Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,B=4\sqrt{x+1}-3\sqrt{x+1}+\sqrt{x+1}+2\sqrt{x+1}=4\sqrt{x+1}\\ b,B=8\Leftrightarrow4\sqrt{x+1}=8\\ \Leftrightarrow\sqrt{x+1}=2\\ \Leftrightarrow x+1=4\\ \Leftrightarrow x=3\left(tm\right)\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 9$
\(C=\frac{\sqrt{x}(\sqrt{x}+3)-(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{x+3}\\ =\frac{x+2\sqrt{x}+3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{x+3}=\frac{x+2\sqrt{x}+3}{(\sqrt{x}+3)(x+3)}\)
2: Để (d)//y=(m2+1)x-4 thì \(\left\{{}\begin{matrix}m^2=1\\m-5\ne-4\end{matrix}\right.\Leftrightarrow m=1\)
1) \(\sqrt{2x-5}=7\)
\(\left(\sqrt{2x-5}\right)^2=7^2\)
\(2x-5=49\)
\(2x=54\)
\(x=27\)
2) \(3+\sqrt{x-2}=4\)
\(\sqrt{x-2}=1\)
\(\left(\sqrt{x-2}\right)^2=1^2\)
\(x-2=1\)
\(x=3\)
1) \(\sqrt{2x-5}=7\left(đk:x\ge\dfrac{5}{2}\right)\)
\(\Leftrightarrow2x-5=49\Leftrightarrow2x=54\Leftrightarrow x=27\left(tm\right)\)
2) \(3+\sqrt{x-2}=4\left(đk:x\ge2\right)\)
\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)
3) \(\Leftrightarrow\sqrt{\left(x-1\right)^2}=1\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
4) \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
5) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+4\right)^2}\)
\(\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
6) \(ĐK:x\ge-2\)
\(\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\)
\(\Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\)
\(\Leftrightarrow x+2=x+7\Leftrightarrow2=7\left(VLý\right)\)
Vậy \(S=\varnothing\)
7) \(ĐK:x\ge-1\)
\(\Leftrightarrow5\sqrt{2x+1}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{2x+1}\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow2x+1=x+1\Leftrightarrow x=0\left(tm\right)\)
a: Vì (d)//y=3x nên m-1=3
hay m=2
Vậy: (d): y=3x+2n-5
Thay x=1 và y=4 vào (d), ta được:
2n-5+3=4
\(\Leftrightarrow2n=6\)
hay n=3
1:
a: \(P=B:A\)
\(=\dfrac{3\sqrt{x}-3-2\sqrt{x}+4+\sqrt{x}+2}{x-4}:\dfrac{4\sqrt{x}-1}{x-4}\)
\(=\dfrac{2\sqrt{x}+3}{x-4}\cdot\dfrac{x-4}{4\sqrt{x}-1}=\dfrac{2\sqrt{x}+3}{4\sqrt{x}-1}\)
b: Để P nguyên thì \(2\sqrt{x}+3⋮4\sqrt{x}-1\)
=>\(4\sqrt{x}+6⋮4\sqrt{x}-1\)
=>\(4\sqrt{x}-1+7⋮4\sqrt{x}-1\)
=>4căn x-1 thuộc {1;-1;7;-7}
=>căn x thuộc {1/2;0;2}
mà x nguyên và x>=0 và x<>4
nên x thuộc {0}
ĐK: x > 0; x \(\ne\)1
a) A = \(\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)
A = \(\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
A = \(\left(\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\right)\cdot\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
A = \(\frac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\cdot\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}\)
A = \(\frac{2\sqrt{x}}{\sqrt{x}}\cdot\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) Với x > 0 và x khác 1
Ta có: A = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Để A nhận giá trị nguyên <=> \(\frac{2}{\sqrt{x}-1}\)nguyên <=> \(2⋮\left(\sqrt{x}-1\right)\)
<=> \(\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Lập bảng:
Vậy ...