Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 4x>=3x-1
=>4x-3x>=-1
=>x>=-1
b: =>11x+2>4(9x+1)-3(8x+1)
=>11x+2>36x+4-24x-3
=>11x+2>12x+1
=>-x+1>0
=>-x>-1
hay x<1
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+3x+1\right)-\left(x-1\right)\left(x^2+3x+2\right)>=0\)
=>(x-1)<=0
=>x<=1
a: \(A=\dfrac{x}{x+3}-1=\dfrac{x-x-3}{x+3}=\dfrac{-3}{x+3}\)
\(B=\dfrac{9-x^2+x^2-9-x^2+4x-4}{\left(x+3\right)\left(x-2\right)}=\dfrac{-\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}=\dfrac{-x+2}{x+3}\)
b: B nguyên
=>-x-3+5 chia hết cho x+3
=>x+3 thuộc {1;-1;5;-5}
=>x thuộc {-2;-4;-8}
c: P=A:B
=(-3/x+3):(-x+2)/(x+3)
=3/(x-2)
a: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
hay AM⊥BC
Xét ΔAEC vuông tại E và ΔADB vuông tại D có
góc EAC chung
Do đó: ΔAEC\(\sim\)ΔADB
b: Xét ΔAED và ΔACB có
AE/AC=AD/AB
góc EAD chung
Do đó: ΔAED\(\sim\)ΔACB
a: Xét ΔOMN và ΔOPQ có
góc OMN=góc OPQ
góc MON=góc POQ
=>ΔOMN đồng dạng với ΔOPQ
=>OM/OP=ON/OQ=MN/PQ
=>OM*OQ=OP*ON
b: Xét ΔOMA vuông tại A và ΔOPB vuông tại B có
góc OMA=góc OPB
=>ΔOMA đồng dạng với ΔOPB
=>OM/OP=OA/OB=MN/PQ
Bài 10
a; Giao của d1 với trục ox là điểm có hoành độ thỏa mãn
\(x\) - 3 = 0 ⇒ \(x\) = 3
Giao của d1 với trục oy là điểm có tung độ thỏa mãn y = 0 - 3 = -3
Giao của d2 với trục ox là điểm có hoành độ thỏa mãn
3 - \(x\) = 0 ⇒ \(x\) = 3
Giao của d2 với trục oy là điểm có tung độ thỏa mãn y = 3 - 0 = 3
Ta có đồ thị d1 và d2 như hình dưới
b; Giao của d1 và d2 là điểm có phương trình hoành độ thỏa mãn
\(x\) - 3 = 3 - \(x\)
2\(x\) = 6
\(x\) = 6 : 2
\(x\) = 3; ⇒ y = 3- 3 =0
Vậy giao của d1 và d2 là A(3;0)
Bài 9:
Giao của d1 với trục ox là điểm có hoành độ thỏa mãn
2\(x\) - 3 = 0 ⇒ \(x\) = \(\dfrac{3}{2}\)
Giao của d1 với trục oy là điểm có tung độ thỏa mãn
y = 2.0 - 3 = - 3
Giao của d2 với trục ox là điểm có hoành độ thỏa mãn
-3 - \(x\) = 0 ⇒ \(x\) = 0
Giao của d2 với trục oy là điểm có tung độ thỏa mãn
y = -3 - 0 = -3
Ta có đồ thị như hình dưới đây
Giao của d1 và d2 là điểm có hoành độ thỏa mãn phương trình
2\(x\) - 3 = -3 - \(x\)
2\(x\) + \(x\) = 0
3\(x\) =0
\(x\) = 0
⇒ y = -3 - 0
y = - 3
Vậy giao của d1 và d2 là điểm B(0; -3)
a: Xét ΔAHD có
AP là đường cao ứng với cạnh HD
AP là đường trung tuyến ứng với cạnh HD
Do đó: ΔAHD cân tại A
mà AP là đường cao ứng với cạnh HD
nên AP là đường phân giác ứng với cạnh HD
Xét ΔAHE có
AQ là đường cao ứng với cạnh HE
AQ là đường trung tuyến ứng với cạnh HE
Do đó: ΔHAE cân tại A
mà AQ là đường cao ứng với cạnh HE
nên AQ là đường phân giác ứng với cạnh HE
Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)
\(=2\left(\widehat{QAH}+\widehat{PAH}\right)\)
\(=2\cdot90^0=180^0\)
Do đó: E,A,D thẳng hàng
mà AD=AE(=AH)
nên A là trung điểm của DE
a) Xét \(\Delta ADP\) = \(\Delta AHP\) có: ( cạnh huyền -cạnh góc vuông)
góc APD = APH=90o
AD = AH
AP chung
=> AD=AH (1)
CMTT với \(\Delta AEQ=\Delta AHQ\left(CH-CGV\right)\)
=> AE= AH (2)
Từ 1 và 2 => AD= AE
=> A là trung điểm của DE
b) Xét \(\Delta DHE\) có:
DP=PH; HQ=QE
=> PQ là đg trung bình của tam giắc DHE
=> PQ// DE; PQ=1/2 DE
c) Xét tứ giác APHQ có: góc HPA= 90o; Góc A =90o; góc HQA=90o
=> Tứ giác APHQ là HCN
=> PQ=AH ( theo t/c HCN)
Lớp 4 :))
lớp 4