K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A={(1;1); (1;2); ...; (1;6)}

=>n(A)=6

P(A)=6/36=1/6

b: B={(1;4); (2;3); (3;2); (4;1)}

=>P(B)=4/36=1/9

c: C={(3;1); (4;2); (5;3); (6;4)}

=>P(C)=4/36=1/9

d: D={(1;3); (1;5); (1;1); (3;5); (3;1); (3;3); (5;3); (5;1); (5;5)}

=>P(D)=9/36=1/4

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Gọi F là biến cố “ít nhất một con xúc xắc xuất hiện mặt 6 chấm”.

Biến cố \(\overline F \) là “ Cả hai con xúc xắc đều không xuất hiện mặt 6 chấm”.

Ta có \(n\left( \Omega  \right) = 36\) và \(\overline F  = \left\{ {\left( {i;j} \right),1 \le i;j \le 5} \right\}\) do đó \(n\left( {\overline F } \right) = 25\).

Vậy \(P\left( {\overline F } \right) = \frac{{25}}{{36}}\) nên \(P\left( F \right) = 1 - \frac{{25}}{{36}} = \frac{{11}}{{36}}\).

28 tháng 4 2023

\(\Omega=\left\{\left(i\right)|i=1,2,3,4,5,6\right\}\)

\(\Rightarrow n\left(\Omega\right)=6\)

Gọi \(A:``\) Xuất hiện trên hai mặt chấm\("\)

\(A=\left\{3,4,5,6\right\}\)

\(\Rightarrow n\left(A\right)=4\)

\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{4}{6}=\dfrac{2}{3}\)

28 tháng 4 2023

Không gian mẫu: Ω= {1;2;3;4;5;6}   →n(Ω)=6

Gọi biến cố A:" Xuất hiện trên hai mặt chấm"

A ={3;4;5;6}    ➝n(A)= 4

Do đó, p(A)=\(\dfrac{n\left(A\right)}{n\left(\Omega\right)}\)=\(\dfrac{4}{6}\)=\(\dfrac{2}{3}\)

 

Sửa đề: Xuất hiện mặt 2 chấm

n(A)=1

n(omega)=6

=>P(A)=1/6

Có thể là 2 lần chẵn 1 lần lẻ hoặc cả 3 lần đều chẵn

TH1: 2 chẵn, 1 lẻ

=>Có \(C^1_3\cdot C^1_3\cdot C^1_3=27\left(cách\right)\)

TH2: 3 lần đều chẵn

=>Có \(C^1_3\cdot C^1_3\cdot C^1_3=27\left(cách\right)\)

=>Có 27+27=54 cách

n(omega)=6*6*6=216

=>P=54/216=1/4

a: n(omega)=36

A={(1;5); (2;5); (3;5); (4;5); (5;5); (6;5)}

=>n(A)=6

=>P(A)=6/36=1/6

b: B={(1;6); (2;5); (3;4); (4;3); (5;2); (6;1)}

=>n(B)=6

=>P(B)=1/6

d: D={(2;1); (2;2); ...; (2;6); (3;1); (3;2); ...;(3;6);(5;1); (5;2);...;(5;6)}

=>P(D)=18/36=1/2

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 36\)

Gọi E là biến cố \(E = \left\{ {\left( {1,1} \right);\left( {1;2} \right);\left( {1,3} \right);\left( {2  ;1} \right);\left( {2;2} \right);\left( {3,1} \right)} \right\}\) suy ra \(n\left( E \right) = 6\)

Vậy \(P\left( E \right) = \frac{6}{{36}} = \frac{1}{6}\).

Chọn B

Δ=b^2-4*1*2=b^2-8

Để phương trình vô nghiệm thì b^2-8<0

=>-2 căn 2<b<2 căn 2

=>b=1 hoặc b=2

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Không gian mẫu trong trò chơi trên là tập hợp \(\Omega  = \left\{ {(i,j)|i,j = 1,2,3,4,5,6} \right\}\)trong đó (i,j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”. Vậy \(n(\Omega ) = \;36.\)

a) Gọi A là biến cố “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”.

Các kết quả có lợi cho A là: (4; 6) (5;5) (5;6) (6; 4) (6;5) (6;6). Vậy \(n(A) = \;6.\)

Vậy xác suất của biến cố A là \(P(A) = \;\frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{36}} = \frac{1}{6}.\)

 b) Gọi  B là biến cố “Mặt 1 chấm xuất hiện ít nhất một lần”.

Các kết quả có lợi cho B là: (1; 1) (1 : 2) (1 : 3) (1; 4) (1;5) (1; 6) (2 ; 1) (3;1) (4; 1) (5;1) (6;1). Vậy \(n(B) = \;11.\)

Vậy xác suất của biến cố B là: \(P(B) = \;\frac{{n(B)}}{{n(\Omega )}} = \frac{{11}}{{36}}.\)

27 tháng 9 2023

\(n_{\Omega}=6^3=216\)

a, A: "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc chia hết cho 3"

\(\overline{A}\) : "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc không chia hết cho 3"

Để xuất hiện TH xảy ra biến cố đối của A thì cả 3 con xúc sắc đều ra số chấm không chia hết cho 3, thuộc {1;2;4;5}

=> \(n_{\overline{A}}=4.4.4=64\)

Vậy, XS của biến cố A là:

\(P_{\left(A\right)}=1-P_{\overline{A}}=1-\dfrac{n_{\overline{A}}}{n_{\Omega}}=1-\dfrac{64}{216}=\dfrac{19}{27}\)

b, B: "Tổng các số chấm ở mặt xuất hiện ba con xúc sắc lớn hơn 4"

=> \(\overline{B}\) : "Tổng các số chấm ở mặt xuất hiện trên ba con xúc sắc không lớn hơn 4"

=> \(\overline{B}=\left\{\left(1;1;1\right);\left(2;1;1;\right);\left(1;2;1\right);\left(1;1;2\right)\right\}\Rightarrow n_{\overline{B}}=4\)

Vậy, XS của biến cố B là:

\(P_{\left(B\right)}=1-P_{\overline{B}}=1-\dfrac{n_{\left(B\right)}}{n_{\Omega}}=1-\dfrac{4}{216}=\dfrac{53}{54}\)

 

 

27 tháng 9 2023

Em không hoán vị cho 2 TH còn lại vì khả năng 2 chấm có thể xuất hiện ở từng viên 1 hả?