K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 3 2022

5.1

Do \(a\ge c\Rightarrow\left(a+1\right)^2\ge\left(c+1\right)^2\Rightarrow\dfrac{1}{\left(c+1\right)^2}\ge\dfrac{1}{\left(a+1\right)^2}\)

\(P=\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{2}{\left(b+1\right)^2}+\dfrac{2}{\left(c+1\right)^2}\ge\dfrac{2}{\left(a+1\right)^2}+\dfrac{2}{\left(b+1\right)^2}+\dfrac{2}{\left(c+1\right)^2}\)

Áp dụng BĐT Bunhiacopxki:

\(\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(b+1\right)^2}=\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(\dfrac{a}{b}+1\right)}+\dfrac{1}{\left(ab+1\right)\left(\dfrac{b}{a}+1\right)}=\dfrac{1}{ab+1}\)

Tương tự:

\(\dfrac{1}{\left(b+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}\ge\dfrac{1}{bc+1}\)

\(\dfrac{1}{\left(c+1\right)^2}+\dfrac{1}{\left(a+1\right)^2}\ge\dfrac{1}{ca+1}\)

Cộng vế:

\(P\ge\dfrac{1}{ab+1}+\dfrac{1}{bc+1}+\dfrac{1}{ca+1}\ge\dfrac{9}{ab+bc+ca+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(a=b=c=1\)

NV
16 tháng 3 2022

5.2

Ta có:

\(\dfrac{1}{2a+3b+3c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)+\left(c+a\right)}\le\dfrac{1}{16}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\)

Tương tự:

\(\dfrac{1}{3a+2b+3c}\le\dfrac{1}{16}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{2}{c+a}\right)\)

\(\dfrac{1}{3a+3b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)

Cộng vế:

\(P\le\dfrac{1}{16}\left(\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\right)=505\)

\(P_{max}=505\) khi \(a=b=c=\dfrac{3}{4040}\)