K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>x(x+4)>=0

=>x>=0 hoặc x<=-4

b:=>x+3>0

hay x>-3

c: =>(x-1)(x+1)<0

=>-1<x<1

d: \(x^2+1>=1>0\forall x\)

nên \(x\in R\)

e: =>(2x-3)(2x+3)>=0

=>x>=3/2 hoặc x<=-3/2

8 tháng 7 2018

a> x^2 +4x lớn hơn bằng 0 thôi nhé

8 tháng 7 2018

\(a,x^2+4x\ge0\)

\(\Rightarrow4x\ge-x^2\)

\(\Rightarrow4\ge-x\Rightarrow x\le-1\)

\(b,x+\frac{3}{3}>0\)

\(\Rightarrow x>-1\)

a: =>x-3>0

=>x>3

b: \(x^2-x+5=x^2-x+\dfrac{1}{4}+\dfrac{19}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\forall x\)

c: \(\Leftrightarrow x^2+4x-3< =0\)

\(\Leftrightarrow\left(x+2\right)^2< =7\)

\(\Leftrightarrow-\sqrt{7}< =x+2< =\sqrt{7}\)

hay \(-\sqrt{7}-2< =x< =\sqrt{7}-2\)

19 tháng 5 2017

a) \(2-x\ge0\Leftrightarrow x\le2\)(chuyển x sang bên phải rồi đảo vế)

b) \(2+x\ge0\Leftrightarrow x\ge-2\)(cộng cả hai vế với -2)

c) \(7-x\ge0\Leftrightarrow x\le7\)(giống phần a)

Bạn tự kết luận nha!!

8 tháng 7 2020

\(\frac{x-2}{18}-\frac{2x+5}{12}>\frac{x+6}{9}-\frac{x-3}{6}\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{36}-\frac{3\left(2x+5\right)}{36}>\frac{4\left(x+6\right)}{36}-\frac{6\left(x-3\right)}{36}\)

\(\Leftrightarrow2x-4-6x-15>4x+24-6x+18\)

\(\Leftrightarrow2x-6x-4x+6x>24+18+4+15\)

\(\Leftrightarrow-2x>61\)

\(\Leftrightarrow x< -\frac{61}{2}\)

Vậy nghiệm của bất phương trình là \(x< -\frac{61}{2}\)

8 tháng 7 2020

Bài b và c làm cách mình thì dễ hiểu hơn nhiều :3

\(\left(2x-2\right)\left(2x+3\right)\le0\)

TH1 : \(\hept{\begin{cases}2x-3\le0\\2x+3\ge0\end{cases}< =>\hept{\begin{cases}2x\le3\\2x\ge-3\end{cases}}}\)

\(< =>\hept{\begin{cases}x\le\frac{3}{2}\\x\ge-\frac{3}{2}\end{cases}}\)

TH2 : \(\hept{\begin{cases}2x-3\ge0\\2x+3\le0\end{cases}< =>\hept{\begin{cases}2x\ge3\\2x\le-3\end{cases}}}\)

\(< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\le-\frac{3}{2}\end{cases}}\)

Vậy ...

25 tháng 2 2019

x2+10x+25-4x(x+5)=0

⇔(x+5)2-4x(x+5)=0

⇔(x+5)(x+5-4x)=0

⇔(x+5)(5-3x)=0

\(\left\{{}\begin{matrix}x+5=0\\5-3x=0\end{matrix}\right.\Leftrightarrow\left\{{} }\left\{{}\begin{matrix}x=-5\\x=\dfrac{5}{3}\end{matrix}\right.\)

14 tháng 8 2020

d) x2 + 2x + 2 < 0 

<=> x2 + 2x + 1 + 1 < 0

<=> ( x + 1 )2 + 1 < 0

<=> ( x + 1 )2 < -1 ( vô lí )

=> BPT vô nghiệm ( đpcm )

e) 4x2 - 4x + 5 ≤ 0

<=> 4x2 - 4x + 1 + 4 ≤ 0

<=> ( 2x - 1 )2 + 4 ≤ 0

<=> ( 2x - 1 )2 ≤ -4 ( vô lí )

=> BPT vô nghiệm ( đpcm )

f) x2 + x + 1 ≤ 0

<=> x2 + 2.1/2.x + 1/4 + 3/4 ≤ 0

<=> ( x + 1/2 )2 + 3/4 ≤ 0

<=> ( x + 1/2 )2 ≤ -3/4 ( vô lí )

=> BPT vô nghiệm ( đpcm )

14 tháng 8 2020

a,Ta có :\(x^2+2x+2=\left(x^2+2x+1\right)+1\)

\(=\left(x+1\right)^2+1\)

Do \(\left(x+1\right)^2\ge0< =>\left(x+1\right)^2+1\ge1\)

=> BPT vô nghiệm

b,Ta có :\(4x^2-4x+5=\left[\left(2x\right)^2-2.2x+1\right]+4\)

\(=\left(2x-1\right)^2+4\)

Do \(\left(2x-1\right)^2\ge0< =>\left(2x-1\right)^2+4\ge4\)

=> BPT vô nghiệm

c,Ta có :\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x^2+2.\frac{1}{2}.x+\frac{1}{2}^2\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Do \(\left(x+\frac{1}{2}\right)^2\ge0< =>\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

=> BPT vô nghiệm

30 tháng 4 2019

a. Ta có \(\left(x^2+1\right)\left(4x-2\right)\ge0\)

Mà \(x^2+1\ge0+1>0\)

\(\Leftrightarrow4x-2\ge0\Leftrightarrow x\ge\frac{1}{2}\)

b.Ta có: \(\left(x-2\right)x^2>0\)

mà \(x^2\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x^2\ne0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x>2\end{cases}\Leftrightarrow}x>2}\)