K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 3 2021

\(\Leftrightarrow\left(a^2-3a+2\right)x>a-2\)

- Với \(\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\) BPT vô nghiệm

- Với \(1< a< 2\Rightarrow a^2-3a+2< 0\) BPT có nghiệm:

\(x< \dfrac{a-2}{a^2-3a+2}\Leftrightarrow x< \dfrac{1}{a-1}\)

- Với \(\left[{}\begin{matrix}a>2\\a< 1\end{matrix}\right.\) \(\Rightarrow a^2-3a+2>0\) BPT có nghiệm: \(x>\dfrac{1}{a-1}\)

27 tháng 2 2016

\(\begin{cases}\left(x^2-1\right)\left(x-2\right)\ge0\\x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\end{cases}\)  (1)

Xét các bất phương trình thành phần

\(\left(x^2-1\right)\left(x-2\right)\ge0\)  (a)

\(x^2-\left(3a+1\right)x+a\left(2a+1\right)\le0\)  (b)

Ta có T(1)=T(a)\(\cap\) T(b)

Lập bảng xét dấy 

\(f\left(x\right)=\left(x^2-1\right)\left(x-2\right)\)

x-\(\infty\)       -1           1           2                  +\(\infty\)
f(x)        -    0    +     0       -    0      +

Từ bảng xét dấu ta được T(a) = \(\left[-1;1\right]\cup\left[2;+\infty\right]\)

Từ : \(x^2-\left(3a+1\right)x+a\left(2a+1\right)\) ta có các nghiệm x= a; x=2a+1

- Nếu \(a\le2a+1\Leftrightarrow a\ge-1\) thì T(b) = \(\left[a;2a+1\right]\)

Xét các trường hợp sau :

         + Trường hợp 1 :

 \(\begin{cases}-1\le a\le1\\-1\le2a+1\le1\end{cases}\)   \(\Leftrightarrow\)  \(\begin{cases}-1\le a\le1\\0\le a\le0\end{cases}\)   \(\Leftrightarrow\)   \(-1\le a\le0\)

Ta có T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)

          + Trường hợp 2 

 \(\begin{cases}-1\le a\le1\\1<2a+1<2\end{cases}\)   \(\Leftrightarrow\)  \(\begin{cases}-1\le a\le1\\a\in\left\{0;\frac{1}{2}\right\}\end{cases}\)   \(\Leftrightarrow\)   \(-1\le a\le0\)

Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\)

 

    + Trường hợp 3 

 \(\begin{cases}-1\le a\le1\\2\le2a+1\end{cases}\)   \(\Leftrightarrow\)  \(\begin{cases}-1\le a\le1\\\frac{1}{2}\le a\end{cases}\)   \(\Leftrightarrow\)   \(\frac{1}{2}\le a\le1\)

Ta có T(a)\(\cap\) T(b)= \(\left[a;1\right]\cup\left[2;2a+1\right]\)

   + Trường hợp 4

   1<a<2 suy ra 2a+1>3>2. Khi đó ta có Ta có T(a)\(\cap\) T(b)= \(\left[2;2a+1\right]\)

   + Trường hợp 5 :

   a\(\ge\)2 suy ra 2a+1 \(\ge\) a \(\ge\) 2. Khi đó T(a)\(\cap\) T(b)= \(\left[a;2a+1\right]\)

- Nếu 2a+1<a \(\Leftrightarrow\) a<-1 thì T(b) = \(\left[a;2a+1\right]\)

Khi đó ta có T(a)\(\cap\) T(b) = \(\varnothing\) nên (1) vô nghiệm

Từ đó ta kết luận :

+ Khi a<-1 hệ vô nghiệm T(1) =\(\varnothing\)

+  Khi \(-1\le a\le0\) hoặc \(a\ge2\) hệ có tập nghiệm T (1) = \(\left[a;2a+1\right]\)

+ Khi 0<a<\(\frac{1}{2}\)  hệ có tập nghiệm T(1) = \(\left[a;1\right]\)

+ Khi \(\frac{1}{2}\)\(\le\)\(\le\)1 hệ có tập nghiệm T(1) = \(\left[a;1\right]\cup\left[2;2a+1\right]\)

+ Khi 1<a<2, hệ có tập nghiệm T(1) =\(\left[2;2a+1\right]\)

 

 

 

 

 

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)\ne0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình có vô số nghiệm thì \(m-3=0\)

hay m=3

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\m^2-4m+3< >0\end{matrix}\right.\Leftrightarrow m=-2\)

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Để phương trình có vô số nghiệm thì m=3

5 tháng 5 2017

a​) \(\left|2x-5m\right|=2x-3m\)
​Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
​Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
​Biện luận:
​Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
​Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
​Với m < 0 phương trình vô nghiệm.

5 tháng 5 2017

b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
​Biện luận:
​Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).

14 tháng 4 2017

Lời giải

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)

\(\Leftrightarrow8x^2+14mx+3m^2=0\)

\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m

\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)

so sánh (3) với (1)

\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)

m <0 hiển nhiên đúng

xét khi m\(\ge\)0

\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)

Biện luận

(I)với m <0 có hai nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)

(II) với m= 0 có nghiệm kép x=0

(III) m>0 vô nghiệm

 

 

3 tháng 5 2017

b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).

26 tháng 11 2021

Với \(m=-1\Leftrightarrow4x+1=0\Leftrightarrow x=-\dfrac{1}{4}\)

Với \(m=1\Leftrightarrow1=0\Leftrightarrow x\in\varnothing\)

Với \(m\ne\pm1\)

\(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)\\ \Delta=4m^2-8m+4-4m^2-4\\ \Delta=-8m\)

PT vô nghiệm \(\Leftrightarrow-8m< 0\Leftrightarrow m>0\)

PT có nghiệm kép \(\Leftrightarrow-8m=0\Leftrightarrow m=0\)

Khi đó \(x=\dfrac{2\left(m-1\right)}{2\left(m^2-1\right)}=\dfrac{1}{m+1}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow-8m>0\Leftrightarrow m< 0\)

Khi đó \(\left[{}\begin{matrix}x_1=\dfrac{2\left(m-1\right)-\sqrt{-8m}}{2\left(m^2-1\right)}\\x_2=\dfrac{2\left(m-1\right)+\sqrt{-8m}}{2\left(m^2+1\right)}\end{matrix}\right.\)