K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2020

\(sin^8x+cos^8x=\left(sin^4x+cos^4x\right)^2-2sin^4x.cos^4x\)

\(=\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]^2-2\left(sinx.cosx\right)^4\)

\(=\left[1-\frac{1}{2}sin^22x\right]^2-\frac{1}{8}sin^42x\)

\(=1-sin^22x+\frac{1}{8}sin^42x=1-\frac{1-cos4x}{2}+\frac{1}{8}\left(\frac{1-cos4x}{2}\right)^2\)

\(=\frac{35}{64}+\frac{7}{16}cos4x+\frac{1}{64}cos8x\)

Pt đã cho trở thành:

\(\frac{35}{64}+\frac{7}{16}cos4x+\frac{65}{64}cos8x=2\)

\(\Leftrightarrow\frac{65}{64}\left(2cos^24x-1\right)+\frac{7}{16}cos4x-\frac{93}{64}=0\)

\(\Leftrightarrow130cos^24x+28cos4x-158=0\)

\(\Rightarrow\left[{}\begin{matrix}cos4x=1\\cos4x=-\frac{158}{130}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow4x=k2\pi\Rightarrow x=\frac{k\pi}{2}\)

NV
6 tháng 10 2021

\(\Leftrightarrow sin8x-\sqrt{2}cos8x=cos6x-\sqrt{2}sin6x\)

\(\Leftrightarrow\dfrac{1}{\sqrt{3}}sin8x-\dfrac{\sqrt{2}}{\sqrt{3}}cos8x=\dfrac{1}{\sqrt{3}}cos6x-\dfrac{\sqrt{2}}{\sqrt{3}}sin6x\)

Đặt \(\dfrac{1}{\sqrt{3}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow\dfrac{\sqrt{2}}{\sqrt{3}}=sina\)

\(\Rightarrow sin8x.cosa-cos8x.sina=cos6x.cosa-sin6x.sina\)

\(\Leftrightarrow sin\left(8x-a\right)=cos\left(6x+a\right)\)

\(\Leftrightarrow sin\left(8x-a\right)=sin\left(\dfrac{\pi}{2}-6x-a\right)\)

\(\Leftrightarrow...\)

NV
15 tháng 10 2020

1.

\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)

\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

NV
15 tháng 10 2020

2.

\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)

\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)

Xét (1):

Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm

NV
8 tháng 9 2020

\(\Leftrightarrow\left(sin^4x+cos^4x\right)^2-2sin^4x.cos^4x=\frac{17}{32}\)

\(\Leftrightarrow\left[1-2sin^2x.cos^2x\right]^2-2sin^4x.cos^4x=\frac{17}{32}\)

Đặt \(sin^2x.cos^2x=\frac{1}{4}sin^22x=t\Rightarrow0\le t\le\frac{1}{4}\)

\(\Rightarrow\left(1-2t\right)^2-2t^2=\frac{17}{32}\)

\(\Leftrightarrow2t^2-4t+\frac{15}{32}=0\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{15}{8}\left(l\right)\\t=\frac{1}{8}\end{matrix}\right.\) \(\Rightarrow\frac{1}{4}sin^22x=\frac{1}{8}\Leftrightarrow2sin^22x=1\)

\(\Leftrightarrow cos4x=0\)

27 tháng 9 2018

3.3 d)

\(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\ \Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\ \Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\)

27 tháng 9 2018

3.4 a)

\(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \)

Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\)

Ta được:

\(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\ \)

Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)\(sin\alpha=\dfrac{2}{\sqrt{5}}\)

Phương trình tương đương:

\(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\ \Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\)

4 tháng 9 2017

ADCT: sin2a=2sina.cosa

cos2a=2cos2a-1 (a ở đây có thể là: x, 2x,3x, pi/2-x,......)

a)

pt<=>4sin2x.cos2x=cos2.(\(\dfrac{\Pi}{4}\)-4x)

<=>2sin4x=2cos2(\(\dfrac{\Pi}{4}\)-4x)-1

<=>2sin4x=2.(\(\dfrac{\sqrt{2}}{2}\))2.(cos4x+sin4x)2-1

<=>2sin4x=(cos24x+sin24x)+2sin4x.cos4x-1

<=>2sin4x=1+2sin4x.cos4x-1

<=>2sin4x(1-cos4x)=0

Tới đây đơn giản rồi bạn tự giải đi!

4 tháng 9 2017

b)

Pt<=>(sinx.cos\(\dfrac{\Pi}{2}\)+cosx.sin\(\dfrac{\Pi}{2}\))4-sin4x=sin4x

<=>cos4x-sin4x=sin4x

<=>(cos2x-sin2x)(cos2x+sin2x)-sin4x=0

cos2x+sin2x=1, cos2x-sin2x=cos2x

<=>cos2x-2sin2x.cos2x=0

<=>cos2x(1-2sin2x)=0

Tự giải dc rồi chứ????leuleu

NV
14 tháng 9 2021

a.

Với \(cosx=0\) ko phải nghiệm

Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)

\(\Rightarrow-3tanx+tan^2x=2+2tan^2x\)

\(\Leftrightarrow tan^2x+3tanx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(-2\right)+k\pi\end{matrix}\right.\)

NV
14 tháng 9 2021

b.

Với \(cosx=0\) không phải nghiệm

Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)

\(\Rightarrow2tan^2x+tanx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\dfrac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=arctan\left(-\dfrac{3}{2}\right)+k\pi\end{matrix}\right.\)