Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
ĐKXĐ: \(x< 5\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=2\)
a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))
Vì hai vế ko âm, bp 2 vế ta được:
2x2 - 3 = 4x - 3
\(\Leftrightarrow\) 2x2 = 4x
\(\Leftrightarrow\) x2 = 2x
\(\Leftrightarrow\) x2 - 2x = 0
\(\Leftrightarrow\) x(x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy S = {2}
b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)
Vì hai vế ko âm, bp 2 vế ta được:
2x - 1 = x - 1
\(\Leftrightarrow\) x = 0 (KTM)
Vậy x = \(\varnothing\)
c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x - 6 = x - 3
\(\Leftrightarrow\) x2 - 2x - 3 = 0
\(\Leftrightarrow\) x2 - 3x + x - 3 = 0
\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 1) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)
Vậy S = {3}
d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x = 3x - 5
\(\Leftrightarrow\) x2 - 4x + 5 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0
\(\Leftrightarrow\) (x - 2)2 + 1 = 0
Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!
\(ĐK:x>0\)
\(pt\Leftrightarrow\sqrt{x\left(x+3\right)}+2\sqrt{x+2}-2x-\sqrt{\frac{x^2+5x+6}{x}}=0\)
\(\Leftrightarrow x\sqrt{\frac{x+3}{x}}-\sqrt{\frac{\left(x+2\right)\left(x+3\right)}{x}}+2\sqrt{x+2}-2x=0\)
\(\Leftrightarrow\sqrt{\frac{x+3}{x}}\left(x-\sqrt{x+2}\right)-2\left(x-\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\left(\sqrt{\frac{x+3}{x}}-2\right)\left(x-\sqrt{x+2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{\frac{x+3}{x}}=2\left(1\right)\\x-\sqrt{x+2}=0\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\frac{x+3}{x}=4\Leftrightarrow3x=3\Leftrightarrow x=1\left(tm\right)\)
\(\left(2\right)\Leftrightarrow x^2-x-2=0\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-1\left(L\right)\end{cases}}\)
Kết luận: Phương trình có 2 nghiệm {1;2}
a/ \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=4\)
\(\Leftrightarrow x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}=4\)
Làm nốt
b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
nhân căn x vào ta có
pt <=>\(\sqrt{x^2\left(x+3\right)}+2\sqrt{x\left(x+2\right)}=2x.\sqrt{x}+\sqrt{x^2+6+5x}\)
<=> \(\sqrt{x^2\left(x+3\right)}+2\sqrt{x\left(x+2\right)}=2x\sqrt{x}+\sqrt{\left(x+2\right)\left(x+3\right)}\)
đặt \(\sqrt{x}=a,\sqrt{x+3}=b,\sqrt{x+3}=c\)
ta có \(a^2b+2ca=2a^3+bc\) <=> \(a^2\left(b-2a\right)-c\left(b-2a\right)=0< =>\left(b-2a\right)\left(a^2-c\right)=0\)
đến đây thì tự giải nhé