Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiên: 5 - x \(\ge\) 0 ; 3x + 1 \(\ge\) 0 <=> 5 \(\ge\) x \(\ge\) -1/3
PT <=> \(\frac{\left(\sqrt{5-x}-\sqrt{3x+1}\right)\left(\sqrt{5-x}+\sqrt{3x+1}\right)}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}=8.\left(x-1\right).\left(x+3\right)\)
<=> \(\frac{5-x-3x-1}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}-8.\left(x-1\right).\left(x+3\right)=0\)
<=> \(\frac{4\left(1-x\right)}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}+8.\left(1-x\right).\left(x+3\right)=0\)
<=> \(\left(\frac{4}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}+8.\left(x+3\right)\right).\left(1-x\right)=0\)
<=> 1 - x = 0 (Vì \(\frac{4}{\left(\sqrt{5-x}+\sqrt{3x+1}\right)}+8.\left(x+3\right)>0\) với x thuộc đkxd)
<=> x = 1 (t/m)
Vậy x = 1
- TXD :R => \(\sqrt{x^2-8x+16}-x=2\Leftrightarrow\sqrt{\left(x-4\right)^2}-x=2\)\(\Rightarrow|x-4|-x=2\)
- Nếu \(x\ge4\)phương trình trở thành \(\Leftrightarrow x-4-x=2\Leftrightarrow-4=2\left(Vl\right)\)
- Nếu \(x< 4\)phương trình trở thành \(\Leftrightarrow4-x-x=2\Leftrightarrow x=1\)
- Câu 2 : Đk \(x\ge0\)ta có \(\sqrt{x}\left(3-2\sqrt{9}+\sqrt{16}\right)=5\Leftrightarrow\sqrt{x}\left(3-2.3+4\right)=5\)\(\sqrt{x}=5\Leftrightarrow x=25\left(tm\right)\)
2: ĐKXĐ: x>=0
\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)
=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)
=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)
=>\(-2\sqrt{3x}=-4\)
=>\(\sqrt{3x}=2\)
=>3x=4
=>\(x=\dfrac{4}{3}\left(nhận\right)\)
3:
ĐKXĐ: x>=0
\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)
=>\(13\sqrt{2x}=20+3\sqrt{2}\)
=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)
=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)
=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)
4: ĐKXĐ: x>=-1
\(\sqrt{16x+16}-\sqrt{9x+9}=1\)
=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>\(\sqrt{x+1}=1\)
=>x+1=1
=>x=0(nhận)
5: ĐKXĐ: x<=1/3
\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)
=>\(5\sqrt{1-3x}=10\)
=>\(\sqrt{1-3x}=2\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1(nhận)
6: ĐKXĐ: x>=3
\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)
=>x-3=16
=>x=19(nhận)
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
ĐKXĐ:\(9x^2+16x+32 ≥ 0 <=>(9x^2+12x+4)+4x+28≥0 <=>(3x+2)^2+4x+28 ≥0\)
Mà \((3x+2)^2 ≥0\)
\(=>4x+28 ≥0 =>x ≥-7\)
Phương trình\(<=> \)\((3x-16y-24)^2=9x^2+16x+32\)
Ta có:\(9x^2+16x+32=(3x+2)^2+4x+28 ≥(3x+2)^2\)
Hết cách òi chỉ còn cách này thôi :
ĐK -1/3 <=x <= 1
Dễ thấy x = 1 là nghiệm đúng của pt
với 1 < x < 5 => \(\sqrt{5-x}2\)
=> VT = \(\sqrt{5-x}-\sqrt{3x+1}8.1+16.1-24=0\)
=> với -1/3 < x < 1 => \(\sqrt{5-x}>2;\sqrt{3x+1}0\)
VP \(