Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x^2+2x\\x^2-x-2=-x^2-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x-2=0\\2x^2+x-2=0\end{matrix}\right.\)
hay \(x\in\left\{-\dfrac{2}{3};\dfrac{-1+\sqrt{17}}{4};\dfrac{-1-\sqrt{17}}{4}\right\}\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x^2+10x+21=x^2-20x-9\\3x^2+10x+21=-x^2+20x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2+30x+30=0\\4x^2-10x+12=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{-15+\sqrt{165}}{2};\dfrac{-15-\sqrt{165}}{2}\right\}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x< >\dfrac{3}{2}y\\x< >-\dfrac{y}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{4}{2x-3y}+\dfrac{5}{3x+y}=-2\\\dfrac{-5}{2x-3y}+\dfrac{3}{3x+y}=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{20}{2x-3y}+\dfrac{25}{3x+y}=-10\\-\dfrac{20}{2x-3y}+\dfrac{12}{3x+y}=84\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{37}{3x+y}=74\\-\dfrac{5}{2x-3y}+\dfrac{3}{3x+y}=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\-\dfrac{5}{2x-3y}+3:\dfrac{1}{2}=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\\dfrac{-5}{2x-3y}=15\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+3y=\dfrac{3}{2}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}11x=\dfrac{7}{6}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{66}\\3y=2x+\dfrac{1}{3}=\dfrac{7}{33}+\dfrac{1}{3}=\dfrac{6}{11}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{7}{66}\\y=\dfrac{2}{11}\end{matrix}\right.\)(nhận)
b: ĐKXĐ: \(\left\{{}\begin{matrix}x< >y-2\\x< >-y+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{7}{x-y+2}-\dfrac{5}{x+y-1}=\dfrac{9}{2}\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{14}{x-y+2}-\dfrac{10}{x+y-1}=9\\\dfrac{15}{x-y+2}+\dfrac{10}{x+y-1}=20\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{29}{x-y+2}=29\\\dfrac{3}{x-y+2}+\dfrac{2}{x+y-1}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-y+2=1\\3+\dfrac{2}{x+y-1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\\dfrac{2}{x+y-1}=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-y=-1\\x+y-1=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\x+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)(nhận)
c:
ĐKXĐ: \(\left\{{}\begin{matrix}y< >2x\\y< >-x\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1\\\dfrac{3}{2x-y}-\dfrac{3}{x+y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+y}=-1\\\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y=3\\2x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=6\\2x-y=3\end{matrix}\right.\)
=>x=2 và y=2x-3=4-3=1(nhận)
d:ĐKXĐ: \(\left\{{}\begin{matrix}x< >-y+1\\x< >\dfrac{1}{2}y-\dfrac{3}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}+\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{15}{x+y-1}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{19}{x+y-1}=\dfrac{19}{2}\\\dfrac{15}{x+y-1}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y-1=2\\\dfrac{15}{2}+\dfrac{5}{2x-y+3}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\\dfrac{5}{2x-y+3}=7-\dfrac{15}{2}=-\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y=3\\2x-y+3=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-13\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=-10\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{3}\\y=3-x=3+\dfrac{10}{3}=\dfrac{19}{3}\end{matrix}\right.\left(nhận\right)\)
e:
ĐKXĐ: \(x\ne\pm2y\)
\(\left\{{}\begin{matrix}\dfrac{6}{x-2y}+\dfrac{2}{x+2y}=3\\\dfrac{3}{x-2y}+\dfrac{4}{x+2y}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{6}{x-2y}+\dfrac{2}{x+2y}=3\\\dfrac{6}{x-2y}+\dfrac{8}{x+2y}=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{6}{x+2y}=5\\\dfrac{3}{x-2y}+\dfrac{4}{x+2y}=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\\dfrac{3}{x-2y}+4:\dfrac{-6}{5}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\\dfrac{3}{x-2y}=-1+4\cdot\dfrac{5}{6}=-1+\dfrac{10}{3}=\dfrac{7}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+2y=-\dfrac{6}{5}\\x-2y=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{3}{35}\\x-2y=\dfrac{9}{7}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{70}\\2y=x-\dfrac{9}{7}=-\dfrac{87}{70}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{70}\\y=-\dfrac{87}{140}\end{matrix}\right.\left(nhận\right)\)
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)
=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge6\)(1)
mặt khác 5-2x-x2=6-(x+1)2\(\le6\)(2)
từ (1) và (2)=>dấu = xảy ra khi VP =6 =VTtức x=-1
b)\(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4+10x^2+9}\)
=\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2+1\right)^2+4}>5\)(x2+1>0)(1')
mặt khác VP=5-2(x+1)2\(\le\)5(2')
từ (1') và (2')=> pt vô nghiệm
Đặt \(2x^2-3x+1=t\Rightarrow2x^2-3x-9=t-10\)
Phương trình trở thành:
\(t\left(t-10\right)=-9\Leftrightarrow t^2-10t+9=0\Rightarrow\left[{}\begin{matrix}t=1\\t=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x+1=1\\2x^2-3x+1=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x=0\\2x^2-3x-8=0\end{matrix}\right.\)
\(\Leftrightarrow...\) (bấm máy)
b)đk:\(x\ge\dfrac{1}{2}\)
Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)
\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)
=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\)
Dấu = xảy ra\(\Leftrightarrow x=1\)
Vậy....
c) đk: \(x\ge0\)
\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)
\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)
pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)
\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...
a)ĐKXĐ: x≥-1/3; x≤6
<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)
(vì x≥-1/3 nên3x+1≥0 )
9: \(\left\{{}\begin{matrix}3x-2=y\\2x+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=2\\2x+3y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4\\6x+9y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11y=-14\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{14}{11}\\x=\dfrac{y+2}{3}=\dfrac{\dfrac{14}{11}+2}{3}=\dfrac{12}{11}\end{matrix}\right.\)
\(9,\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\2x+3\left(3x-2\right)=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2=y\\11x=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12}{11}\\y=\dfrac{14}{11}\end{matrix}\right.\)
\(10,\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\2\left(2-3y\right)-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2-3y\\4-6y-y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{14}\\y=\dfrac{3}{7}\end{matrix}\right.\)
a.
ĐKXĐ: \(x^2+2x-1\ge0\)
\(x^2+2x-1+2\left(x-1\right)\sqrt{x^2+2x-1}-4x=0\)
Đặt \(\sqrt{x^2+2x-1}=t\ge0\)
\(\Rightarrow t^2+2\left(x-1\right)t-4x=0\)
\(\Delta'=\left(x-1\right)^2+4x=\left(x+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=1-x+x+1=2\\t=1-x-x-1=-2x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=2\\\sqrt{x^2+2x-1}=-2x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-5=0\\3x^2-2x+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=-1\pm\sqrt{6}\)
b.
ĐKXĐ: \(x\ge\dfrac{1}{5}\)
\(2x^2+x-3+2x-\sqrt{5x-1}+2-\sqrt[3]{9-x}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{\left(x-1\right)\left(4x-1\right)}{2x+\sqrt[]{5x-1}}+\dfrac{x-1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt[]{5x-1}}+\dfrac{1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}\right)=0\)
\(\Leftrightarrow x=1\) (ngoặc đằng sau luôn dương)
Ta có:
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{9}+\sqrt{4}=5\)
\(3-4x-2x^2=5-2\left(x+1\right)^2\le5\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}3\left(x+1\right)^2=0\\5\left(x^2-1\right)^2=0\\2\left(x+1\right)^2=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
Vậy pt có nghiệm duy nhất \(x=-1\)
a) 2x2 + 3x + 1 = 12
<=> 2x2 + 3x - 11 = 0
<=> \(2\left(x^2+\frac{3}{2}x-\frac{11}{2}\right)=0\)
<=> \(x^2+\frac{3}{2}x-\frac{11}{2}=0\)
<=> \(\left(x+\frac{3}{4}\right)^2-\frac{97}{16}=0\)
<=> \(\left(x+\frac{3}{4}+\frac{\sqrt{97}}{4}\right)\left(x+\frac{3}{4}-\frac{\sqrt{97}}{4}\right)=0\)
<=> \(x=\frac{\pm97-3}{4}\)
b) \(3x^2+2x+9=21\)
<=> 3x2 + 2x - 12 = 0
<=> \(x^2+\frac{2}{3}x-4=0\)
<=> \(\left(x-\frac{1}{3}\right)^2-\frac{37}{9}=0\)
<=> \(\left(x-\frac{1-\sqrt{37}}{3}\right)\left(x-\frac{1+\sqrt{37}}{3}\right)=0\)
<=> \(x=\frac{1\pm\sqrt{37}}{3}\)