K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

Điều kiện:\(-2\le x\le2\)

Ta có: \(10-3x=\left(2+x\right)+4\left(2-x\right)\)

Đặt \(a=\sqrt{2+x}\ge0\)

\(b=\sqrt{2-x}\ge0\)

Pt trở thành:\(3a-6b+4ab=a^2+4b^2\)

Chuyển vế cùng 1 vế sau đó nhóm lại và đặt nhân tử chung 

\(\left(a^2-2ab\right)-\left(2ab-4b^2\right)-\left(3a-6b\right)=0\)

\(a\left(a-2b\right)-2b\left(a-2b\right)-3\left(a-2b\right)=0\)

\(\left(a-2b\right)\left(a-2b-3\right)=0\)

  • Với a-2b=0

\(\Rightarrow\sqrt{2+x}-2\sqrt{2-x}=0\)

\(\Rightarrow x=\frac{6}{5}\left(tm\right)\)

  • Với a-2b-3=0

\(\Rightarrow\sqrt{2+x}-2\sqrt{2-x}-3=0\)

=> vô nghiệm

Vậy pt trên có nghiệm là \(x=\frac{6}{5}\)

17 tháng 6 2016

Câu 1:

Ta có 2 vế luôn dương nên bình phương 2 vế được:

\(2x^2+4=5x^3+5\)

\(5x^3-2x^2-1=0\)

<=> x = 0,7528596306

NV
6 tháng 8 2021

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

NV
6 tháng 8 2021

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

15 tháng 12 2017

a,dk x>0

\(\Leftrightarrow\)\(\dfrac{\left(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}\right)\left(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}\right)}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}=3x\)

\(\Leftrightarrow x\left(\dfrac{x+2}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}-3\right)=0\)

\(\Rightarrow\dfrac{x+2}{\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}}=3\)

\(\Rightarrow\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\dfrac{x+2}{3}\)

kh vs dé bài ta có hệ \(\left\{{}\begin{matrix}\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\\\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\dfrac{x+2}{3}\end{matrix}\right.\)

cộng vs nhau ta có

\(2\sqrt{2x^2+x+1}=3x+\dfrac{x+2}{2}\)

\(\Leftrightarrow3\sqrt{2x^2+x+1}=5x+1\)

giải ra ta có x=1(tm) x=-8/7 (l)

15 tháng 12 2017

b, dk tu xd nhé ok

\(\Leftrightarrow\dfrac{\left(\sqrt{x^2+x+1}-\sqrt{x^2-x+1}\right)\left(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}\right)}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}}-2x=0\)

\(\Leftrightarrow2x\left(\dfrac{1}{\sqrt{x^2+x+1}+\sqrt{x^2-x+1}}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+x+1}+\sqrt{x^2-x+1}=1\left(l\right)\end{matrix}\right.\)

ns \(\sqrt{x^2+x+1}+\sqrt{x^2-x+1}>1\)

\(\Rightarrow x=0\left(tm\right)\)

7 tháng 8 2018

Hãy tích cho tui đi

vì ai tích cho tui thì người đó thông minh

7 tháng 8 2018

ĐK:  \(-2\le x\le2\)

\(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)

<=>  \(3\left(\sqrt{2+x}-2\sqrt{2-x}\right)=10-3x-4\sqrt{4-x^2}\)

Đặt:  \(t=\sqrt{2+x}-2\sqrt{2-x}\)  =>   \(t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó pt trở thành:

\(3t=t^2\)

<=> \(t^2-3t=0\)

<=> \(t\left(t-3\right)=0\)

<=> \(\orbr{\begin{cases}t=0\\t=3\end{cases}}\)

đến đây bn tự giải nốt nhé

31 tháng 8 2017

ai giải hộ với nhanh cái mk sắp đi học òi

2 tháng 9 2017

thui chữa òi ko cần làm đâu

19 tháng 9 2021

1) \(\sqrt{5-2x}=6\left(đk:x\le\dfrac{5}{2}\right)\)

\(\Leftrightarrow5-2x=36\)

\(\Leftrightarrow2x=-31\Leftrightarrow x=-\dfrac{31}{2}\left(tm\right)\)

2) \(\sqrt{2-x}=\sqrt{x+1}\left(đk:2\ge x\ge-1\right)\)

\(\Leftrightarrow2-x=x+1\)

\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

3) \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

4) \(\sqrt{x^2-10x+25}=x-2\left(đk:x\ge2\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-2\)

\(\Leftrightarrow\left|x-5\right|=x-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=x-2\left(x\ge5\right)\\x-5=2-x\left(2\le x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5=2\left(VLý\right)\\x=\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

19 tháng 9 2021

lamf nốt 4